OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy

Juejun Hu  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22174-22186 (2010)
http://dx.doi.org/10.1364/OE.18.022174


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, I systematically investigated Micro-Cavity PhotoThermal Spectroscopy (MC-PTS), a novel technique for ultra-sensitive detection of chemical molecular species. I first derive the photothermal enhancement factor and noise characteristics of the technique using a generic theoretical model, followed by numerical analysis of a design example using chalcogenide glass micro-disk cavities. Guidelines for sensor material selection and device design are formulated based on the theoretical insight. The numerical analysis shows that this technique features a record photothermal enhancement factor of 104 with respect to conventional cavity-enhanced (multi-pass) infrared absorption spectroscopy, and is capable of detecting non-preconcentrated chemical vapor molecules down to the ppt level with a moderate cavity quality factor of 105 and a pump laser power of 0.1 W. Such performance qualifies this technique as one of the most sensitive methods for chemical vapor spectroscopic analysis.

© 2010 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(300.1030) Spectroscopy : Absorption
(300.6430) Spectroscopy : Spectroscopy, photothermal
(140.3948) Lasers and laser optics : Microcavity devices
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Spectroscopy

History
Original Manuscript: September 3, 2010
Revised Manuscript: September 28, 2010
Manuscript Accepted: September 28, 2010
Published: October 5, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Juejun Hu, "Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy," Opt. Express 18, 22174-22186 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-21-22174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Bialkowski, “Photothermal Spectroscopy Methods for Chemical Analysis,” in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, J. D. Winefordner, ed. (John Wiley & Sons 1996).
  2. A. Sedlacek and J. Lee, “Photothermal interferometric aerosol absorption spectrometry,” Aerosol Sci. Technol. 41(12), 1089–1101 (2007). [CrossRef]
  3. N. Dovichi and J. Harris, “Laser Induced Thermal Lens Effect for Calorimetric Trace Analysis,” Anal. Chem. 51(6), 728–731 (1979). [CrossRef]
  4. C. C. Davis and S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20(14), 2539–2554 (1981). [CrossRef] [PubMed]
  5. H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution,” Appl. Opt. 31(15), 2669–2677 (1992). [CrossRef] [PubMed]
  6. H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991). [CrossRef]
  7. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001). [CrossRef] [PubMed]
  8. J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
  9. G. Farca, S. I. Shopova, and A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15(25), 17443–17448 (2007). [CrossRef] [PubMed]
  10. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008). [CrossRef] [PubMed]
  11. B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009). [CrossRef]
  12. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass resonators: experiment & analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009). [CrossRef]
  13. B. B. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010). [CrossRef] [PubMed]
  14. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  15. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  16. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of nanoparticles in resonant cavities,” Phys. Rev. A (submitted to).
  17. J. Hu, “Planar Chalcogenide Glass Materials and Devices,” Massachusetts Institute of Technology Ph.D Thesis (2009).
  18. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010). [CrossRef] [PubMed]
  19. Encyclopedia of Optical Engineering, R. G. Driggers and C. Hoffman, ed. (CRC Press 2003).
  20. A. Rogalski, “Comparison of photon and thermal detector performance,” In Handbook of Infra-red Detection Technologies, M. Henini and M. Razeghi, ed. (Elsevier Science 2002).
  21. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  22. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002). [CrossRef]
  23. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009). [CrossRef]
  24. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009). [CrossRef]
  25. P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).
  26. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009). [CrossRef]
  27. S. C. H. O. T. T. North America, Inc., “Infrared Chalcogenide Glass IG3,” http://www.us.schott.com/advanced_optics/english/download/ir_grade_ig3_dec09.pdf
  28. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  29. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010). [CrossRef] [PubMed]
  30. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007). [CrossRef] [PubMed]
  31. T. Gensty and W. Elsasser, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun. 256(1-3), 171–183 (2005). [CrossRef]
  32. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981). [CrossRef]
  33. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994). [CrossRef]
  34. T. Ikegami, “Differential Temperature Controller for Stable Temperature Control of a Nonlinear Optical Crystal at Approximately 200 °C,” Jpn. J. Appl. Phys. 39(Part 1, No. 8), 4814–4815 (2000). [CrossRef]
  35. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited