OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle

Cathleen Fedtke, Fabrice Manns, and Arthur Ho  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22364-22376 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Precise peripheral ocular measurements have become important in vision research. These measurements are influenced by the shape and position of the peripherally observed entrance pupil. A long-held assumption is that its apparent shape is elliptical and is optically centered in its position. Our three-dimensional model shows that as viewing angle increases, the entrance pupil moves forward, tilts and curves towards the observer’s direction. Moreover, the tangential pupil size narrows and exhibits asymmetric distortions. Consequently, its shape is non-elliptical and its geometric mid-point departs from the optical center. These findings may have implications on the accuracy of peripheral ocular measurements.

© 2010 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 19, 2010
Revised Manuscript: September 23, 2010
Manuscript Accepted: September 24, 2010
Published: October 7, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Cathleen Fedtke, Fabrice Manns, and Arthur Ho, "The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle," Opt. Express 18, 22364-22376 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009). [CrossRef] [PubMed]
  2. E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005). [CrossRef] [PubMed]
  3. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009). [CrossRef] [PubMed]
  4. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006). [CrossRef]
  5. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19(12), 2363–2373 (2002). [CrossRef]
  6. A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009). [CrossRef] [PubMed]
  7. D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007). [CrossRef] [PubMed]
  8. Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996). [PubMed]
  9. L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996). [CrossRef] [PubMed]
  10. C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009). [CrossRef] [PubMed]
  11. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002). [PubMed]
  12. R. A. Applegate, and D. E. Koenig, M. J. D., S. E. J., and N. L. C., “Pupil center location uncertainty is a major source of instrument noise in WFE measurements,” in ARVO, (E-Abstract 6160, 2009)
  13. C. Fedtke, K. Ehrmann, A. Ho, and B. Holden, “The impact of pupil alignment on peripheral refraction measurements using the Shin-Nippon NVision K5001,” presented at the American Academy of Optometry, Orlando, 11–14 Nov. 2009, Abstract: 90598.
  14. B. S. Jay, “The effective pupillary area at varying perimetric angles,” Vision Res. 1(5-6), 418–424 (1962). [CrossRef]
  15. K. H. Spring and W. S. Stiles, “Apparent shape and size of the pupil viewed obliquely,” Br. J. Ophthalmol. 32(6), 347–354 (1948). [CrossRef] [PubMed]
  16. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985). [CrossRef] [PubMed]
  17. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003). [CrossRef] [PubMed]
  18. S. F. Ray, Applied Photographic Optics, Third Edition ed. (Focal Press, Great Britain, 2002), Chap. 34.
  19. L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004). [CrossRef] [PubMed]
  20. M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991). [PubMed]
  21. H. J. Wyatt, “The form of the human pupil,” Vision Res. 35(14), 2021–2036 (1995). [CrossRef] [PubMed]
  22. M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992). [CrossRef] [PubMed]
  23. H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5 (2007). [CrossRef] [PubMed]
  24. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005). [CrossRef]
  25. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1586 KB)     
» Media 2: AVI (1646 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited