OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography

Marinko V. Sarunic, Azadeh Yazdanpanah, Eli Gibson, Jing Xu, Yujing Bai, Sieun Lee, H. Uri Saragovi, and Mirza Faisal Beg  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23435-23441 (2010)
http://dx.doi.org/10.1364/OE.18.023435


View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rodent models of retinal degenerative diseases are used by vision scientists to develop therapies and to understand mechanisms of disease progression. Measurement of changes to the thickness of the various retinal layers provides an objective metric to evaluate the performance of the therapy. Because invasive histology is terminal and provides only a single data point, non-invasive imaging modalities are required to better study progression, and to reduce the number of animals used in research. Optical Coherence Tomography (OCT) has emerged as a dominant imaging modality for human ophthalmic imaging, but has only recently gained significant attention for rodent retinal imaging. OCT provides cross section images of retina with micron-scale resolution which permits measurement of the retinal layer thickness. However, in order to be useful to vision scientists, a significant fraction of the retinal surface needs to be measured. In addition, because the retinal thickness normally varies as a function of distance from optic nerve head, it is critical to sample all regions of the retina in a systematic fashion. We present a longitudinal study of OCT to measure retinal degeneration in rats which have undergone optic nerve axotomy, a well characterized form of rapid retinal degeneration. Volumetric images of the retina acquired with OCT in a time course study were segmented in 2D using a semi-automatic segmentation algorithm. Then, using a 3D algorithm, thickness measurements were quantified across the surface of the retina for all volume segmentations. The resulting maps of the changes to retinal thickness over time represent the progression of degeneration across the surface of the retina during injury. The computational tools complement OCT retinal volumetric acquisition, resulting in a powerful tool for vision scientists working with rodents.

© 2010 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 20, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: October 6, 2010
Published: October 22, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Marinko V. Sarunic, Azadeh Yazdanpanah, Eli Gibson, Jing Xu, Yujing Bai, Sieun Lee, H. Uri Saragovi, and Mirza Faisal Beg, "Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography," Opt. Express 18, 23435-23441 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-22-23435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009). [CrossRef] [PubMed]
  2. Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010). [CrossRef] [PubMed]
  3. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-13-25-10200 . [CrossRef] [PubMed]
  4. M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007). [CrossRef] [PubMed]
  5. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007). [CrossRef] [PubMed]
  6. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008). [CrossRef] [PubMed]
  7. M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009). [CrossRef] [PubMed]
  8. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  9. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010), http://www.opticsinfobase.org.proxy.lib.sfu.ca/abstract.cfm?URI=oe-18-14-14730 . [CrossRef] [PubMed]
  10. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007). [CrossRef] [PubMed]
  11. M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-5-4074 . [CrossRef] [PubMed]
  12. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-26-23719 . [CrossRef]
  13. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009). [PubMed]
  14. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted). [PubMed]
  15. M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981). [CrossRef] [PubMed]
  16. S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000). [CrossRef] [PubMed]
  17. F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009). [CrossRef] [PubMed]
  18. H. Q. Dinh, A. Yezzi, and G. Turk, “Texture Transfer During Shape Transformation,” ACM Trans. Graph. 24(2), 289–310 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited