OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Nanoparticles for highly efficient multiphoton fluorescence bioimaging

Laura Martinez Maestro, Emma Martín Rodriguez, Fiorenzo Vetrone, Rafik Naccache, Hector Loro Ramirez, Daniel Jaque, John A. Capobianco, and José García Solé  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23544-23553 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we demonstrate for the first time that the new class of fluoride-based inorganic upconverting nanoparticles, NaYF4:Er3+, Yb3+, are the most efficient multiphoton excited fluorescent nanoparticles developed to date. The near-infrared-to-visible conversion efficiency of the aforementioned nanoparticles surpasses that of CdSe quantum dots and gold nanorods, which are the commercially available inorganic fluorescent nanoprobes presently used for multiphoton fluorescence bioimaging. The results presented here open new perspectives for the implementation of fluorescence tomography by multiphoton fluorescence imaging.

© 2010 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(300.0300) Spectroscopy : Spectroscopy
(160.4236) Materials : Nanomaterials

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 27, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: September 26, 2010
Published: October 26, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Laura Martinez Maestro, Emma Martín Rodriguez, Fiorenzo Vetrone, Rafik Naccache, Hector Loro Ramirez, Daniel Jaque, John A. Capobianco, and José García Solé, "Nanoparticles for highly efficient multiphoton 
fluorescence bioimaging," Opt. Express 18, 23544-23553 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005). [CrossRef] [PubMed]
  2. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004). [CrossRef] [PubMed]
  3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998). [CrossRef] [PubMed]
  4. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  5. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003). [CrossRef] [PubMed]
  6. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(Pt 2), 83–104 (2000). [CrossRef] [PubMed]
  7. S. Mulligan, and B. MacVicar, “Two-photon fluorescence microscopy: basic principles, advantages and risks,” in Modern Research and Educational Topics in Microscopy, A. Méndez-Vilas, and J. Díaz, eds. (FORMATEX, Badajoz, Spain, 2007), pp. 881–889.
  8. N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009). [CrossRef] [PubMed]
  9. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  10. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  11. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009). [CrossRef]
  12. H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010). [CrossRef]
  13. S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005). [CrossRef]
  14. M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008). [CrossRef]
  15. L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009). [CrossRef] [PubMed]
  16. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17(14), 11350–11359 (2009). [CrossRef] [PubMed]
  17. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008). [CrossRef] [PubMed]
  18. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008). [CrossRef]
  19. N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009). [CrossRef] [PubMed]
  20. Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009). [CrossRef]
  21. S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009). [CrossRef] [PubMed]
  22. M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009). [CrossRef] [PubMed]
  23. L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009). [CrossRef] [PubMed]
  24. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009). [CrossRef] [PubMed]
  25. J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010). [CrossRef] [PubMed]
  26. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004). [CrossRef]
  27. F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010). [CrossRef] [PubMed]
  28. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008). [CrossRef] [PubMed]
  29. American National Standards Institute, “American National Standard for Safe use of Lasers,” (Laser Institute of America, Orlando, FL, 2000).
  30. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010). [CrossRef]
  31. F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009). [CrossRef] [PubMed]
  32. S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009). [CrossRef]
  33. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008). [CrossRef] [PubMed]
  34. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005). [CrossRef] [PubMed]
  35. G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007). [CrossRef] [PubMed]
  36. It should be mentioned that both two and three power dependences have been reported for upconversion fluorescent gold nanoparticles (see references 9 and 31). Obviously this is related to the participation of different excited states within the involved bands of gold. However, a proper explanation for different observed results does not exist at present.
  37. M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000). [CrossRef]
  38. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998). [CrossRef]
  39. J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005). [CrossRef] [PubMed]
  40. G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).
  41. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  42. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited