OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers

Stéphane Chamot, Elena Migacheva, Olivier Seydoux, Pierre Marquet, and Christian Depeursinge  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23664-23675 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties within limited volumes of diffusive media can be probed by carrying spatially-resolved measurements of diffused light at short source-detector separation (typically one scattering mean free path). At such distance, analytical models only relying on the absorption and reduced scattering coefficients fail at correctly predicting reflectance and it was demonstrated that adding a third optical coefficient γ improves the description of light propagation conditions near the source. In an attempt to relate the γ coefficient to physical properties of turbid media, this paper uses a fractal distribution law for modeling scatterers’ sizes distributions and investigates numerically and experimentally how γ is related to the fractal power α. The results indicate that within the range of γ typically encountered in biological samples, this coefficient is approximately linearly correlated with α.

© 2010 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: July 19, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 17, 2010
Published: October 27, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Stéphane Chamot, Elena Migacheva, Olivier Seydoux, Pierre Marquet, and Christian Depeursinge, "Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers," Opt. Express 18, 23664-23675 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Zonios, and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006). [CrossRef] [PubMed]
  2. P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties," J. Biomed. Opt. 8, 495-503 (2003). [CrossRef] [PubMed]
  3. I. Charvet, G. Ory, P. Thueler, M. A. Brundler, M. Saint-Ghislain, N. Azarpey, A. Hadengue, C. Depeursinge, B. Vermeulen, and P. Meda, "Diagnosis and grading of gastritis by non-invasive optical analysis," Eur. J. Gastroenterol. Hepatol. 16, 1189-1198 (2004). [CrossRef] [PubMed]
  4. M. Patterson, S. Andersson-Engels, B. Wilson, and E. Osei, "Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon path," Appl. Opt. 34, 22-29 (1995). [CrossRef] [PubMed]
  5. G. Weiss, R. Nossal, and R. Bonner, "Statistics of penetration depth of photons re-emitted from irradiated tissue," J. Mod. Opt. 36, 349-359 (1989). [CrossRef]
  6. I. Charvet, P. Thueler, B. Vermeulen, M. Saint-Ghislain, C. Biton, J. Jacquet, F. Bevilacqua, C. Depeursinge, and P. Meda, "A new optical method for the non-invasive detection of minimal tissue alterations," Phys. Med. Biol. 47, 2095-2108 (2002). [CrossRef] [PubMed]
  7. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, and T. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  8. R. Bolt, and J. Ten Bosch, "Method for measuring position dependent volume reflection," Appl. Opt. 32, 4641-4645 (1993). [CrossRef] [PubMed]
  9. F. Bevilacqua, and C. Depeursinge, "Monte carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," J. Opt. Soc. Am. A 16, 2935-2945 (1999). [CrossRef]
  10. A. Kienle, L. Lilge, M. Patterson, R. Hibst, R. Steiner, and B. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  11. J. Mourant, J. Boyer, A. Hielscher, and I. Bigio, "Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations," Opt. Lett. 21, 546-548 (1996). [CrossRef] [PubMed]
  12. D. Durian, and J. Rudnick, "Photon migration at short times and distances and in cases of strong absorption," J. Opt. Soc. Am. A 14, 235-245 (1997). [CrossRef]
  13. V. Venugopalan, J. You, and B. Tromberg, "Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations," Phys. Rev. E 58, 2395-2407 (1998). [CrossRef]
  14. E. Hull, and T. Foster, "Steady-state reflectance spectroscopy in the p3 approximation," J. Opt. Soc. Am. A 18, 584-599 (2001). [CrossRef]
  15. A. Ishimaru, Y. Kuga, and R.-T. Cheung, "Scattering and diffusion of a beam wave in randomly distributer scatterers," J. Opt. Soc. Am. 73, 131-136 (1983). [CrossRef]
  16. R. Grohenhuis, H. Ferwerda, and J. Ten Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983). [CrossRef]
  17. D. Wyman, M. Patterson, and B. Wilson, "Similarity relations for anisotropic scattering in monte carlo simulations of deeply penetrating neutral particles," J. Comput. Phys. 81, 137-150 (1989). [CrossRef]
  18. F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: application to human brain," Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  19. G. Mie, "Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions," Ann. Phys. 25, 377-445 (1908). [CrossRef]
  20. H. van de Hulst, Light scattering by small particles (Dover Publications, Inc, New York, 1981).
  21. B. Gélébart, T. Tinet, J.-M. Tualle, and S. Avrillier, "Phase function simulation in tissue phantoms: a fractal approach," J. Opt. A, Pure Appl. Opt. 5, 377-388 (1996).
  22. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
  23. P. Waliszewski, and J. Konarski, "Tissue as a self-organizing system with fractal dynamics," Adv. Space Res. 28, 545-548 (2001). [CrossRef]
  24. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. Sichirollo, "Extinction and absorption coefficients and scattering phase functions of human tissues in vitro," Appl. Opt. 28, 2318-2324 (1989). [CrossRef] [PubMed]
  25. P. van der Zee, M. Essenpreis, and D. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993). [CrossRef]
  26. D. Passos, J. Hebden, P. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064036 (2005). [CrossRef]
  27. S. Prahl, "Mie scattering calculator," (2007). http://omlc.ogi.edu/calc/mie calc.html.
  28. X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003). [CrossRef]
  29. D. Segelstein, "The complex refractive index of water," Master’s thesis, University of Missouri-Kansas City (1981). http://www.philiplaven.com/Segelstein.txt.
  30. W.-F. Cheong, S. Prahl, and A. Welsh, "A review of the optical properties of biological tissue," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  31. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood-glucose concentration and the reduced scattering coefficient of tissues in the near-infrared," Opt. Lett. 19, 2062-2064 (1994). [CrossRef] [PubMed]
  32. A. Brunsting, and P. F. Mullaney, "Differential light-scattering from spherical mammalian-cells," Biophys. J. 14, 439-453 (1974). [CrossRef] [PubMed]
  33. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996). [CrossRef]
  34. I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, "Optical and thermal characterization of natural (sepia officinalis) melanin," Photochem. Photobiol. 59, 455-462 (1994). [CrossRef] [PubMed]
  35. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, "Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy," Opt. Express 13, 9361-9373 (2005). [CrossRef] [PubMed]
  36. J. Schmitt, and G. Kumar, "Turbulent nature of refractive-index variations in biological tissue," Opt. Lett. 21, 1310-1312 (1996). [CrossRef] [PubMed]
  37. O. V. Angelsky, D. N. Burkovets, A. V. Kovalchuk, and S. G. Hanson, "Fractal description of rough surfaces," Appl. Opt. 41, 4620-4629 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited