OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Label-free optical imaging of membrane patches for atomic force microscopy

Allison B. Churnside, Gavin M. King, and Thomas T. Perkins  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23924-23932 (2010)
http://dx.doi.org/10.1364/OE.18.023924


View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.0180) Microscopy : Microscopy
(180.3170) Microscopy : Interference microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 9, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: October 26, 2010
Published: October 29, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Allison B. Churnside, Gavin M. King, and Thomas T. Perkins, "Label-free optical imaging of membrane patches for atomic force microscopy," Opt. Express 18, 23924-23932 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-23-23924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986). [CrossRef] [PubMed]
  2. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997). [CrossRef] [PubMed]
  3. S. Scheuring and J. N. Sturgis, “Chromatic adaptation of photosynthetic membranes,” Science 309(5733), 484–487 (2005). [CrossRef] [PubMed]
  4. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994). [CrossRef] [PubMed]
  5. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000). [CrossRef]
  6. S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991). [PubMed]
  7. R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005). [CrossRef] [PubMed]
  8. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003). [CrossRef] [PubMed]
  9. H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996). [CrossRef]
  10. C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992). [CrossRef]
  11. A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000). [CrossRef] [PubMed]
  12. H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009). [CrossRef] [PubMed]
  13. H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007). [CrossRef] [PubMed]
  14. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14(1), 405–414 (2006). [CrossRef] [PubMed]
  15. A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15(20), 13434–13445 (2007). [CrossRef] [PubMed]
  16. G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale lateral stability and registration in ambient condition,” Nano Lett. 9(4), 1451–1456 (2009). [CrossRef] [PubMed]
  17. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007). [CrossRef] [PubMed]
  18. G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53(12), 1045–1047 (1988). [CrossRef]
  19. R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006). [CrossRef] [PubMed]
  20. D. J. Müller and A. Engel, “Atomic force microscopy and spectroscopy of native membrane proteins,” Nat. Protoc. 2(9), 2191–2197 (2007). [CrossRef] [PubMed]
  21. Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983). [CrossRef]
  22. D. J. Müller and A. Engel, “The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions,” Biophys. J. 73(3), 1633–1644 (1997). [CrossRef] [PubMed]
  23. D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, NJ, 1999).
  24. A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006). [CrossRef]
  25. H. Michel and D. Oesterhelt, “Three-dimensional crystals of membrane proteins: bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 77(3), 1283–1285 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited