OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Improved adaptive complex diffusion despeckling filter

Rui Bernardes, Cristina Maduro, Pedro Serranho, Adérito Araújo, Sílvia Barbeiro, and José Cunha-Vaz  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24048-24059 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1579 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Despeckling optical coherence tomograms from the human retina is a fundamental step to a better diagnosis or as a preprocessing stage for retinal layer segmentation. Both of these applications are particularly important in monitoring the progression of retinal disorders. In this study we propose a new formulation for a well-known nonlinear complex diffusion filter. A regularization factor is now made to be dependent on data, and the process itself is now an adaptive one. Experimental results making use of synthetic data show the good performance of the proposed formulation by achieving better quantitative results and increasing computation speed.

© 2010 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 7, 2010
Revised Manuscript: October 13, 2010
Manuscript Accepted: October 22, 2010
Published: November 3, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Rui Bernardes, Cristina Maduro, Pedro Serranho, Adérito Araújo, Sílvia Barbeiro, and José Cunha-Vaz, "Improved adaptive complex diffusion despeckling filter," Opt. Express 18, 24048-24059 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001). [CrossRef] [PubMed]
  2. A. F. Fercher, Optical Coherence Tomography: Technology and Applications (Springer, New York, 2008), chap. 4.
  3. P. Puvanathasan and K. Bizheva, “Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set,” Opt. Express 15(24), 15747–15758 (2007). [CrossRef] [PubMed]
  4. H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007). [CrossRef] [PubMed]
  5. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  6. R. Wagner, S. Smith, J. Sandrik, and H. Lopez, “Statistics of speckle in ultrasound b-scans,” IEEE Trans. Sonics Ultrason. 30, 156–163 (1983). [CrossRef]
  7. C. Burckhardt, “Speckle in ultrasound b-mode scans,” IEEE Trans. Sonics Ultrason. 25, 1–6 (1978). [CrossRef]
  8. J. G. Abbott and F. L. Thurstone, “Acoustic speckle: theory and experimental analysis,” Ultrason. Imaging 1(4), 303–324 (1979). [CrossRef] [PubMed]
  9. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42(7), 1427–1439 (1997). [CrossRef] [PubMed]
  10. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000). [CrossRef]
  11. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003). [CrossRef] [PubMed]
  12. P. Shankar and V. Newhouse, “Speckle reduction with improved resolution in ultrasound images,” IEEE Trans. Sonics Ultrason. SU-32, 537–543 (1985).
  13. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003). [CrossRef] [PubMed]
  14. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005). [CrossRef]
  15. K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999). [CrossRef]
  16. A. J. Healey, S. Leeman, and F. Forsberg, “Turning off speckle,” Acoust. Imaging 19, 433–437 (1992). [CrossRef]
  17. D. L. Fried, “Analysis of the clean algorithm and implications for superresolution,” J. Opt. Soc. Am. A 12, 853–860 (1995). [CrossRef]
  18. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998). [CrossRef]
  19. R. Bernstein, “Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images,” IEEE Trans. Circ. Syst. 34, 1275–1291 (1987). [CrossRef]
  20. G. Franceschetti, V. Pascazio, and G. Schirinzi, “Iterative homomorphic technique for speckle reduction in synthetic-aperture radar imaging,” J. Opt. Soc. Am. A 12, 686–694 (1995). [CrossRef]
  21. J. Lee, “Speckle analysis and smoothing of synthetic aperture radar images,” Comput. Graph. Image Process. 17, 24–32 (1981). [CrossRef]
  22. D. Kuan, A. Sawchuk, T. Strand, and P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985). [CrossRef] [PubMed]
  23. S. H. Xiang, L. Zhou, and J. M. Schmitt, “Speckle noise reduction for optical coherence tomography,” Proc. SPIE 3196, 79–88 (1998). [CrossRef]
  24. J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000). [CrossRef]
  25. M. Kuwahara, K. Hachimura, S. Ehiu, and M. Kinoshita, “Processing of riangiocardiographic images”, in Digital Processing of Biomedical Images, (Plenum Publishing, New York, NY, 1976), pp. 187–203.
  26. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990). [CrossRef]
  27. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements in optical coherence tomography using a Markov boundary model”, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Hilton Head, SC, 2000), pp. 2363–2370.
  28. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005). [CrossRef] [PubMed]
  29. A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008). [CrossRef] [PubMed]
  30. M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007). [CrossRef]
  31. M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005). [CrossRef] [PubMed]
  32. O. Tan, G. Li, A. T. H. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008). [CrossRef]
  33. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005). [CrossRef] [PubMed]
  34. T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples,” J. Biomed. Opt. 12(4), 041208 (2007). [CrossRef] [PubMed]
  35. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007). [CrossRef]
  36. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  37. K. Abd-Elmoniem, “Feedback coherent anisotropic diffusion for high resolution image enhancement”, in Proceedings of IEEE International Symposium on Biomedical Imaging, (Washington, DC, 2002), pp. 693–696.
  38. A. Araújo, S. Barbeiro and P. Serranho, “Stability of finite difference schemes for complex diffusion processes”, DMUC report 10–23, (2010).
  39. G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004). [CrossRef]
  40. Matlab (Matlab – The MathWorks Inc., Natick, MA, USA). http://www.mathworks.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited