OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

A sub-100fs self-starting Cr:forsterite laser generating 1.4W output power

Shih-Hsuan Chia, Tzu-Ming Liu, Anatoly A. Ivanov, Andrey B. Fedotov, Aleksey M. Zheltikov, Ming-Rung Tsai, Ming-Che Chan, Che-Hang Yu, and Chi-Kuang Sun  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24085-24091 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (953 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Without cavity dumping or external amplification, we report a femtosecond Cr:forsterite laser with a 1.4W output power and 2W in continuous wave (CW) operated with a crystal temperature of 267K. In the femtosecond regime, the oscillator generates Kerr-lens-mode-locked 84fs pulses with a repetition rate of 85MHz, corresponding to a high 16.5nJ pulse energy directly from a single Cr:forsterite resonator. This intense femtosecond Cr:forsterite laser is ideal to pump varieties of high power fiber light sources and could be thus ideal for many biological and spectroscopy applications.

© 2010 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 5, 2010
Revised Manuscript: September 26, 2010
Manuscript Accepted: October 5, 2010
Published: November 3, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Shih-Hsuan Chia, Tzu-Ming Liu, Anatoly A. Ivanov, Andrey B. Fedotov, Aleksey M. Zheltikov, Ming-Rung Tsai, Ming-Che Chan, Che-Hang Yu, and Chi-Kuang Sun, "A sub-100fs self-starting Cr:forsterite laser generating 1.4W output power," Opt. Express 18, 24085-24091 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Carrig and C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16(21), 1662–1664 (1991). [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996). [CrossRef] [PubMed]
  3. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21(17), 1408–1410 (1996). [CrossRef] [PubMed]
  4. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004). [CrossRef] [PubMed]
  5. C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express 16(15), 11574–11588 (2008). [PubMed]
  6. I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002). [CrossRef]
  7. S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010). [CrossRef]
  8. S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001). [CrossRef]
  9. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001). [CrossRef] [PubMed]
  10. T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006). [CrossRef] [PubMed]
  11. S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009). [CrossRef]
  12. J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009). [CrossRef] [PubMed]
  13. C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003). [CrossRef] [PubMed]
  14. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14(13), 6178–6187 (2006). [CrossRef] [PubMed]
  15. S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007). [CrossRef]
  16. C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008). [CrossRef] [PubMed]
  17. S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010). [CrossRef] [PubMed]
  18. W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010). [CrossRef] [PubMed]
  19. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005). [CrossRef] [PubMed]
  20. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004). [CrossRef] [PubMed]
  21. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006). [CrossRef] [PubMed]
  22. K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005). [CrossRef]
  23. T. Dennis, E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert, “Wavelength References for 1300-nm Wavelength-Division Multiplexing,” J. Lightwave Technol. 20(5), 776–782 (2002). [CrossRef]
  24. M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005). [CrossRef] [PubMed]
  25. M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008). [CrossRef] [PubMed]
  26. A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).
  27. A. B. Fedotov, D. A. Sidorov-Biryukov, A. A. Ivanov, M. V. Alfimov, V. I. Beloglazov, N. B. Skibina, C.-K. Sun, and A. M. Zheltikov, “Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses,” J. Opt. Soc. Am. B 23(7), 1471–1477 (2006). [CrossRef]
  28. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008). [CrossRef]
  29. M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009). [CrossRef]
  30. V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988). [CrossRef]
  31. T. J. Carrig and C. R. Pollock, “Performance of a Continuous-Wave Forsterite Laser with Krypton Ion, Ti:Sapphire and Nd:YAG Pump Lasers,” IEEE J. Quantum Electron. 29(11), 2835–2844 (1993). [CrossRef]
  32. N. Zhavoronkov, A. Avtukh, and V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36(33), 8601–8605 (1997). [CrossRef]
  33. V. Yanovsky, Y. Pang, F. Wise, and B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18(18), 1541–1543 (1993). [CrossRef] [PubMed]
  34. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 mum,” Opt. Lett. 26(5), 292–294 (2001). [CrossRef]
  35. A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995). [CrossRef]
  36. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18(11), 1578–1586 (2001). [CrossRef]
  37. N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23(13), 1028–1030 (1998). [CrossRef]
  38. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, and K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21(5), 354–356 (1996). [CrossRef] [PubMed]
  39. G. Jonusauskas, J. G. Oberlé, and C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23(24), 1918–1920 (1998). [CrossRef]
  40. V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr(4+):Mg(2)SiO(4) oscillator operating at a low repetition rate,” Opt. Lett. 26(24), 1999–2001 (2001). [CrossRef]
  41. H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “80-nJ Multipass-Cavity Chirped-Pulse Cr4+:forsterite Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWE3.
  42. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18(14), 1168–1170 (1993). [CrossRef] [PubMed]
  43. T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Intracavity frequency-doubled femtosecond cr(4+):forsterite laser,” Appl. Opt. 40(12), 1957–1960 (2001). [CrossRef]
  44. T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001). [CrossRef]
  45. T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002). [CrossRef]
  46. Prime Optical Fiber Corp, “Product information of single-mode optical fiber,” http://www.pofc.com/files/file/financial/SMF130V_4.pdf .
  47. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited