OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 5 — Mar. 17, 2010

Superresolution imaging in optical tweezers using high-speed cameras

Juan Pablo Staforelli, Esteban Vera, José Manuel Brito, Pablo Solano, Sergio Torres, and Carlos Saavedra  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3322-3331 (2010)
http://dx.doi.org/10.1364/OE.18.003322


View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-speed cameras are reliable alternatives for the direct characterization of optical trap force and particle motion in optical tweezers setups, replacing indirect motion measurements often performed by quadrant detectors. In the present approach, subpixel motion data of the trapped particle is retrieved from a high-speed low-resolution video sequence. Due to the richness structure of motion diversity of microscopic trapped particles, which are subjected to a Brownian motion, we propose to also use the obtained motion information for tackling the inherent lack of resolution by applying superresolution algorithms on the low-resolution image sequence. The obtained results both for trapping calibration beads and for living bacteria show that the proposed approach allows the proper characterization of the optical tweezers by obtaining the real particle motion directly from the image domain, while still providing high resolution imaging.

© 2010 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: December 11, 2009
Revised Manuscript: January 22, 2010
Manuscript Accepted: January 22, 2010
Published: February 1, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Juan Pablo Staforelli, Esteban Vera, José Manuel Brito, Pablo Solano, Sergio Torres, and Carlos Saavedra, "Superresolution imaging in optical tweezers using high-speed cameras," Opt. Express 18, 3322-3331 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-4-3322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef]
  3. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008). [CrossRef] [PubMed]
  4. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007). [CrossRef]
  5. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16(19), 14561–14570 (2008). [CrossRef] [PubMed]
  6. C. D. Kuglin, and D. C. Hines, “The phase correlation image alignment method,” in Proc. Int. Conference on Cybernetics and Society, 1975, 163–165 (1975).
  7. H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002). [CrossRef]
  8. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003). [CrossRef]
  9. B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996). [CrossRef] [PubMed]
  10. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008). [CrossRef] [PubMed]
  11. R. M. Berry and H. C. Berg, “Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14433–14437 (1997). [CrossRef]
  12. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008). [CrossRef] [PubMed]
  13. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004). [CrossRef] [PubMed]
  14. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999). [CrossRef] [PubMed]
  15. Y. Tu, “The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11737–11741 (2008). [CrossRef] [PubMed]
  16. C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005). [CrossRef]
  17. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009). [CrossRef] [PubMed]
  18. F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited