OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 5 — Mar. 17, 2010

Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor

Simon Tuohy and Adrian Gh. Podoleanu  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3458-3476 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present paper we investigate the possibility of narrowing the depth range of a physical Shack – Hartmann (SH) wavefront sensor (WFS) by using coherence gating. For the coherence gating, two low coherence interferometry (LCI) methods are evaluated and proof of principle configurations demonstrated: (i) a time domain LCI method based on phase shifting interferometry and (ii) a spectral domain LCI method, based on tuning a narrow band optical source. The two configurations are used to demonstrate each, the possibility of constructing a coherence gated (CG) SH/WFS. It is shown that these configurations produce spot patterns similar to those provided by a conventional SH/WFS. The two proof of principle configurations are also used to illustrate elimination of stray reflections in the interface optics which normally disturb the operation of conventional SH/WFSs. The speed and noise performance of the two CG-SH/WFS implementations are discussed.

© 2010 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.0180) Microscopy : Microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 29, 2009
Revised Manuscript: January 11, 2010
Manuscript Accepted: January 31, 2010
Published: February 3, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Simon Tuohy and Adrian Gh. Podoleanu, "Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor," Opt. Express 18, 3458-3476 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987). [CrossRef] [PubMed]
  3. M. Minsky, “Microscopy apparatus US patent 3013467,” (Ser, 1957).
  4. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  5. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  6. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998). [CrossRef]
  7. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  8. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31(19), 3678–3686 (1992). [CrossRef] [PubMed]
  9. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24(14), 951–953 (1999). [CrossRef]
  10. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt. 44(30), 6419–6425 (2005). [CrossRef] [PubMed]
  11. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518–526 (2006). [CrossRef] [PubMed]
  12. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573–577 (2001).
  13. D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005). [CrossRef] [PubMed]
  14. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997). [CrossRef]
  15. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef]
  16. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences, 82544799 (2002).
  17. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003). [CrossRef]
  18. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  19. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006). [CrossRef] [PubMed]
  20. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29(19), 2255–2257 (2004). [CrossRef] [PubMed]
  21. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  22. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992). [CrossRef] [PubMed]
  23. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004). [CrossRef] [PubMed]
  24. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). [CrossRef] [PubMed]
  25. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007). [CrossRef]
  26. J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing , 501–599 (1992).
  27. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  28. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  29. G. Häusler and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998). [CrossRef]
  30. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005). [CrossRef] [PubMed]
  31. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Proc. of SPIE, ser. Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components(2002), pp. 148–160.
  32. D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005). [CrossRef] [PubMed]
  33. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007). [CrossRef] [PubMed]
  34. R. G. Cucu, M. W. Hathaway, A. G. Podoleanu, and R. B. Rosen, “Active axial eye motion tracking by extended range closed loop OPD-locked white light interferometer for combined confocal/en face optical coherence tomography imaging of the human eye fundus in vivo,” (2009), p. 73721R.
  35. J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002). [CrossRef]
  36. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007). [CrossRef] [PubMed]
  37. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009). [CrossRef]
  38. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008). [CrossRef] [PubMed]
  39. A. Gh, Podoleanu, R. G. Cucu, R. B. Rosen, G. M. Dobre, J. A. Rogers, D. A. Jackson, and V. R. Shidlovski, “Adjustable coherence length sources for low-coherence interferometry,” (Proc of SPIE; 2002), pp. 116–124.
  40. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008). [CrossRef] [PubMed]
  41. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564_1 (1957). [CrossRef] [PubMed]
  42. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005). [CrossRef] [PubMed]
  43. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17(8), 1440–1453 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited