OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 5 — Mar. 17, 2010

A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations

Kai Liu, Jie Tian, Yujie Lu, Chenghu Qin, Xin Yang, Shouping Zhu, and Xing Zhang  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3732-3745 (2010)
http://dx.doi.org/10.1364/OE.18.003732


View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bioluminescence imaging (BLI) makes it possible to elucidate molecular and cellular signatures to better understand the effects of human disease in small animal models in vivo. The unambiguous three-dimensional bioluminescent source information obtained by bioluminescence tomography (BLT) could further facilitate its applications in biomedicine. However, to the best of our knowledge, the existing gradient-type reconstruction methods in BLT are inefficient, and often require a relatively small volume of interest (VOI) for feasible results. In this paper, a fast generalized graph cuts based reconstruction method for BLT is presented, which is to localize the bioluminescent source in heterogeneous mouse tissues via max-flow/min-cut algorithm. Since the original graph cuts theory can only handle graph-representable problem, the quadratic pseudo-boolean optimization is incorporated to make the graph representable and tractable, which is called generalized graph cuts (GGC). The internal light source can be reconstructed from the whole domain, so a priori knowledge of VOI can be avoided in this method. In the simulation validations, the proposed method was validated in a heterogeneous mouse atlas, and the source can be localized reliably and efficiently by GGC; and compared with gradient-type method, the proposed method is about 25-50 times faster. Moreover, the experiments for sensitivity to the measurement errors of tissue optical properties demonstrate that, the reconstruction quality is not much affected by mismatch of parameters. In what follows, in vivo mouse BLT reconstructions further demonstrated the potential and effectiveness of the generalized graph cut based reconstruction method.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 14, 2009
Revised Manuscript: January 28, 2010
Manuscript Accepted: February 2, 2010
Published: February 5, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Kai Liu, Jie Tian, Yujie Lu, Chenghu Qin, Xin Yang, Shouping Zhu, and Xing Zhang, "A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations," Opt. Express 18, 3732-3745 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-4-3732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Weissleder and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452,580-589 (2008). [CrossRef]
  2. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7,591-607 (2008). [CrossRef] [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat. Biotechnol. 23,313-320 (2005). [CrossRef] [PubMed]
  4. B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light emitting probes," J. Biomed. Opt. 6,432-440 (2001). [CrossRef] [PubMed]
  5. M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE,  5535,335-351 (2004). [CrossRef]
  6. X. Gu, Q. Zhang, L. Larcom, and H.-B. Jiang, "Three dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12,3996-4000 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-17-3996. [CrossRef] [PubMed]
  7. W.-X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13,6756-6771 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?id=140930. [CrossRef] [PubMed]
  8. G. Wang, H.-O. Shen, W.-X. Cong, S. Zhao, and G.-W. Wei, "Temperature-modulated bioluminescence tomography," Opt. Express 14,7852-7871 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-18-6756. [CrossRef] [PubMed]
  9. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50,4225-4241 (2005). [CrossRef] [PubMed]
  10. W.-X. Cong, D. Kumar, L. V. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys. 33,679-686 (2006). [CrossRef] [PubMed]
  11. G. Wang, W.-X. Cong, K. Durairaj, X. Qian, H-O. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14,7801-7809 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7801. [CrossRef] [PubMed]
  12. N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006). [CrossRef] [PubMed]
  13. Y.-J. Lv, J. Tian, G. Wang, W.-X. Cong, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14,8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211. [CrossRef] [PubMed]
  14. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging" Phys. Med. Biol. 50,5421-5441 (2005). [CrossRef] [PubMed]
  15. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31,365-367 (2006). [CrossRef] [PubMed]
  16. Y.-J. Lv, J. Tian, H. Li, W.-X. Cong, G. Wang, W.-X. Yang, C.-H. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52,4497-4512 (2007). [CrossRef] [PubMed]
  17. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12,024007:1-12 (2007). [CrossRef]
  18. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53,3921-3942 (2008). [CrossRef] [PubMed]
  19. J.-C. Feng, K.-B. Jia, C.-H. Qin, G.-R. Yan, S.-P. Zhu, X. Zhang, J.-T. Liu, and J. Tian, "Three-dimensional Bioluminescence Tomography based on Bayesian Approach," Opt. Express 17,16834-16848 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-19-16834. [CrossRef] [PubMed]
  20. Y.-J. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman and A. F. Chatziioannou, "Experimental bioluminescence tomography with fully parallel radiative-transfer-based reconstruction framework," Opt. Express 17,16681-16695 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-19-16681. [CrossRef] [PubMed]
  21. V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?" IEEE Trans. Patt. Anal. and Mach. Intell. 26,147-159 (2004). [CrossRef]
  22. Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE Trans. Patt. Anal. and Mach. Intell. 26,1124-1137 (2004). [CrossRef]
  23. V. Kolmogorov and C. Rother, "Minimizing nonsubmodular functions with graph cuts-a review," IEEE Trans. Patt. Anal. and Mach. Intell. 9,1274-1279 (2007). [CrossRef]
  24. Y. Boykov, O. Veksler, and R. Zabih, "Efficient approximate energy minimization via graph cuts," IEEE Trans. Patt. Anal. and Mach. Intell. 20,1222-1239 (2001). [CrossRef]
  25. V. Lempitsky, C. Rother, S. Roth, and A. Blake, "Fusion moves for markov random field optimization," IEEE Trans. Patt. Anal. and Mach. Intell., in press.
  26. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31,2289-2299 (2004). [CrossRef] [PubMed]
  27. P. L. Hammer, P. Hansen, and B. Simeone, "Roof duality, complementation and persistency in quadratic 0-1 optimization," Math. Program. 28,121-155 (1984). [CrossRef]
  28. L. Ford and D. Fulkerson, "Maximal flow through a network," Canad. J. Math. 8,309-404 (1956). [CrossRef]
  29. A. V. Goldberg and R. E. Tarjan, "A new approach to the maximum-flow problem," J. ACM 35,921-940 (1988). [CrossRef]
  30. G.-R. Yan, J. Tian, S.-P. Zhu, Y.-K. Dai, and C.-H. Qin, "Fast cone-beam CT image reconstruction using GPU hardware," J. X-Ray Sci. and Technol. 16,225-234 (2008).
  31. S.-P. Zhu, J. Tian, G.-R. Yan, C.-H. Qin, and J.-C. Feng, "Cone beam micro-CT system for small animal imaging and performance evaluation," Int. J. Biomed. Imaging, doc. ID 960573 (2009).
  32. X. Zhang, J. Tian, J.-C. Feng, S.-P. Zhu, and G.-R. Yan, "An anatomical mouse model for multimodal molecular imaging," presented at 31st International Conference of the IEEE Engineering in Medicine and Biology Society, Hilton Minneapolis, Minnesota, USA, September 2-6, 2009.
  33. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20,470-478 (2001). [CrossRef] [PubMed]
  34. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51,2045-2053 (2006). [CrossRef] [PubMed]
  35. J. Virostko, A. C. Powers, and E. D. Jansen, "Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images," App. Opt. 46,2540-2547 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited