OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 6 — Apr. 8, 2010

Polarized fluorescent nanospheres

Rafal Luchowski, Zygmunt Gryczynski, Zeno Földes-Papp, Aaron Chang, Julian Borejdo, Pabak Sarkar, and Ignacy Gryczynski  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4289-4299 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescent beads (nanoparticles, nanospheres) are commonly used in fluorescence spectroscopy and microscopy. Due to the random distribution of dye and high dye to nanoparticle ratio, the fluorescence polarization observed from the beads is low. Therefore beads are not used for polarization study. We demonstrate that photoselective bleaching creates beads with highly polarized fluorescence. First, the beads were immobilized in a PVA polymer. Second, the beads-doped PVA film was exposed to the illumination within the dye absorption band. A progressive decrease of absorption was observed. Next, photophysical properties of photobleached and not bleached films dissolved in water were compared.

© 2010 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(260.5430) Physical optics : Polarization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 15, 2009
Revised Manuscript: February 4, 2010
Manuscript Accepted: February 4, 2010
Published: February 17, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Rafal Luchowski, Zygmunt Gryczynski, Zeno Földes-Papp, Aaron Chang, Julian Borejdo, Pabak Sarkar, and Ignacy Gryczynski, "Polarized fluorescent nanospheres," Opt. Express 18, 4289-4299 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. V. Jena, P. S. Shirude, B. Okumus, K. Laxmi-Reddy, F. Godde, I. Huc, S. Balasubramanian, and T. Ha, “G-Quadruplex DNA Bound by a Synthetic Ligand is Highly Dynamic,” J. Am. Chem. Soc. 131(35), 12522–12523 (2009). [CrossRef] [PubMed]
  2. S. Hohng and T. Ha, “Single-molecule quantum-dot fluorescence resonance energy transfer,” ChemPhysChem 6(5), 956–960 (2005). [CrossRef] [PubMed]
  3. S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87(2), 1328–1337 (2004). [CrossRef] [PubMed]
  4. D. Evanko, “Nature Milestones in Light Microscopy. Milestone 17. Single molecules in the dark,” Nature (October): (2009), doi:.
  5. H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282(5395), 1877–1882 (1998). [CrossRef] [PubMed]
  6. L. Edman, Z. Földes-Papp, S. Wennmalm, and R. Rigler, “The fluctuating enzyme: a single molecule approach,” Chem. Phys. 247(1), 11–22 (1999). [CrossRef]
  7. H. P. Lu, “Single-molecule protein interaction conformational dynamics,” Curr. Pharm. Biotechnol. 10(5), 522–531 (2009). [CrossRef] [PubMed]
  8. J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003). [CrossRef] [PubMed]
  9. S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V studied by simultaneous detection of position and orientation,” EMBO J. 25(9), 1795–1803 (2006). [CrossRef] [PubMed]
  10. A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103(51), 11237–11241 (1999). [CrossRef]
  11. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997). [CrossRef] [PubMed]
  12. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003). [CrossRef] [PubMed]
  13. S. A. Rosenberg, M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Rotational motions of macro-molecules by single-molecule fluorescence microscopy,” Acc. Chem. Res. 38(7), 583–593 (2005). [CrossRef] [PubMed]
  14. T. Cordes, J. Vogelsang, and P. Tinnefeld, “On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent,” J. Am. Chem. Soc. 131, 5018 (2009). [CrossRef] [PubMed]
  15. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11(1), 10 (2006). [CrossRef]
  16. E. Meiss, H. Konno, G. Groth, and T. Hisabori, “Molecular processes of inhibition and stimulation of ATP synthase caused by the phytotoxin tentoxin,” J. Biol. Chem. 283(36), 24594–24553 (2008). [CrossRef] [PubMed]
  17. R. Luchowski, P. Sarkar, S. Bharill, G. Laczko, J. Borejdo, Z. Gryczynski, and I. Gryczynski, “Fluorescence polarization standard for near infrared spectroscopy and microscopy,” Appl. Opt. 47(33), 6257–6265 (2008). [CrossRef] [PubMed]
  18. B. Valeur, “Molecular Fluorescence: Principles And Applications,” 125–198 (2006).
  19. J. Enderlein and I. Gregor, “Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy,” Rev. Sci. Instrum. 76(3), 5 (2005). [CrossRef]
  20. I. Gregor and J. Enderlein, “Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy,” Photochem. Photobiol. Sci. 6(1), 13–18 (2007). [CrossRef] [PubMed]
  21. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). [CrossRef]
  22. D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in reacting system: measurements by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972). [CrossRef]
  23. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]
  24. R. Luchowski, E. G. Matveeva, I. Gryczynski, E. A. Terpetschnig, L. Patsenker, G. Laczko, J. Borejdo, and Z. Gryczynski, “Single Molecule Studies of Multiple-Fluorophore Labeled Antibodies. Effect of Homo-FRET on the Number of Photons Available Before Photobleaching,” Curr. Pharm. Biotechnol. 9(5), 411–420 (2008). [CrossRef] [PubMed]
  25. M. L. Barcellona, S. Gammon, T. Hazlett, M. A. Digman, and E. Gratton, “Polarized fluorescence Correlation spectroscopy of DNA-DAPI complexes,” Microsc. Res. Tech. 65(4-5), 205–217 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited