OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 6 — Apr. 8, 2010

Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays

Ronen Adato, Ahmet Ali Yanik, Chih-Hui Wu, Gennady Shvets, and Hatice Altug  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4526-4537 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2008 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is generally accepted that the lifetimes of the localized plasmonic excitations are inherently controlled by the type of the metals and the shape of the nanoparticles. However, extended plasmonic lifetimes and enhanced near-fields in nanoparticle arrays can be achieved as a result of collective excitation of plasmons. In this article, we demonstrate significantly longer plasmon lifetimes and stronger near-field enhancements by embedding the nanoantenna arrays into the substrate. Our approach offers a more homogeneous dielectric background allowing stronger diffractive couplings among plasmonic particles leading to strong suppression of the radiative damping. We observe near-field enhancements well beyond than those achievable with isolated nanoparticles. Enhanced fields obtained in these structures could be attractive for biosensing and non-linear photonics applications.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: December 8, 2009
Revised Manuscript: January 19, 2010
Manuscript Accepted: February 1, 2010
Published: February 19, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Ronen Adato, Ahmet Ali Yanik, Chih-Hui Wu, Gennady Shvets, and Hatice Altug, "Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays," Opt. Express 18, 4526-4537 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  3. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992). [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  5. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  6. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]
  7. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999). [CrossRef]
  8. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  9. A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009). [CrossRef]
  10. A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009). [CrossRef] [PubMed]
  11. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  12. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  13. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  14. F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
  15. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  16. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006). [CrossRef]
  17. G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009). [CrossRef]
  18. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005). [CrossRef]
  19. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
  21. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008). [CrossRef] [PubMed]
  22. Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005). [CrossRef]
  23. C. S. T. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com .
  24. The electric field due to point dipole are given by Aij⋅pj=k2exp(ikrij){(rij×pj)×rij/rij3+(1−ikrij)[3rij(rij⋅pj)−rij2pj]/rij5}. The first term in the brackets has 1/r dependence and corresponds to the far-field radiation. The second terms are relevant for short range interactions. In order to emphasize the importance of the phase term in the collective scattering process the interaction term is written as exp(ikrij)Cij⋅pj=Aij⋅pj in the text.
  25. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  26. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1985).
  27. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983). [CrossRef] [PubMed]
  28. T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10 (1999).
  29. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907). [CrossRef]
  30. X. M. Bendaña and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17(21), 18826–18835 (2009). [CrossRef]
  31. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003). [CrossRef]
  32. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009). [CrossRef]
  33. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  34. A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008). [CrossRef]
  35. R. Adato, et al., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays – Supporting information,” http://www.pnas.org/content/106/46/19227/suppl/DCSupplemental
  36. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009). [CrossRef] [PubMed]
  37. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited