OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients

Anthony Kim, Mathieu Roy, Farhan Dadani, and Brian C. Wilson  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5580-5594 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurement of tissue optical absorption and (transport) reduced scattering coefficients (μa and μs', respectively) is fundamental to many applications of light in medicine and biology. We report a handheld fiberoptic probe to determine these coefficients by measuring the diffuse reflectance at multiple source-collector distances, which allows for a larger dynamic range than a single source-collector separation. Diffusion theory and a priori knowledge of the spectral shape of μa and μs' are used in a forward model of the diffuse reflectance. The dynamic range and accuracy of this method were evaluated using Monte Carlo simulations, phantom experiments and tissues in vivo.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 19, 2010
Revised Manuscript: February 18, 2010
Manuscript Accepted: February 19, 2010
Published: March 3, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Anthony Kim, Mathieu Roy, Farhan Dadani, and Brian C. Wilson, "A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients," Opt. Express 18, 5580-5594 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Weersink, A. Bogaards, M. Gertner, S. R. Davidson, K. Zhang, G. Netchev, J. Trachtenberg, and B. C. Wilson, “Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities,” J. Photochem. Photobiol. B 79(3), 211–222 (2005). [CrossRef] [PubMed]
  2. L. C. Chin, W. M. Whelan, and I. A. Vitkin, “Models and measurements of light intensity changes during laser interstitial thermal therapy: implications for optical monitoring of the coagulation boundary location,” Phys. Med. Biol. 48(4), 543–559 (2003). [CrossRef] [PubMed]
  3. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1/2), 26–40 (2000). [CrossRef] [PubMed]
  4. A. Kim, and B. C. Wilson, “Measurement of ex vivo and in vivo tissue optical properties: Methods and theories,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J. Welch and M.J.C. van Gemert eds., (Springer SBM, in press 2010), Chap. 8.
  5. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002). [CrossRef] [PubMed]
  6. E. Chan, T. Menovsky, and A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35(22), 4526–4532 (1996). [CrossRef] [PubMed]
  7. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30(31), 4474–4476 (1991). [CrossRef] [PubMed]
  8. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005). [CrossRef] [PubMed]
  9. L. C. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12(6), 064027 (2007). [CrossRef]
  10. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999). [CrossRef] [PubMed]
  11. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  12. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  13. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996). [CrossRef] [PubMed]
  14. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  15. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005). [CrossRef] [PubMed]
  16. A. Kim, U. Kasthuri, B. C. Wilson, A. White, and A. L. Martel, “Preliminary clinical results for the in vivo detection of breast cancer using interstitial diffuse optical spectroscopy,” in Proc. MICCAI-Biophotonics, 75–82 (2006).
  17. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22(16), 2456–2462 (1983). [CrossRef] [PubMed]
  18. J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22(3), 546–551 (2005). [CrossRef]
  19. S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67(1), 23–32 (1998). [CrossRef] [PubMed]
  20. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990). [CrossRef] [PubMed]
  21. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993). [CrossRef] [PubMed]
  22. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992). [CrossRef] [PubMed]
  23. M. Roy and B. C. Wilson, “An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents,” Proc. SPIE 6870, 68700E (2008). [CrossRef]
  24. J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R. Drezek, “Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements,” Appl. Opt. 45(31), 8152–8162 (2006). [CrossRef] [PubMed]
  25. S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited