OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS)

Chang-Hwan Im, Young-Jin Jung, Seungduk Lee, Dalkwon Koh, Do-Won Kim, and Beop-Min Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5730-5739 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1958 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study invesitigated the feasibility of measuring directional coupling between cortical areas with near-infrared spectroscopy (NIRS). Cerebral hemodynamic responses were recorded at the primary somatosensory cortex (S1), secondary somatosensory cortex (S2), and primary motor cortex (M1) regions of the rat barrel cortex during electrical stimulation of rat whiskers. Deoxyhemoglobin concentration changes were calculated from NIRS recordings and the Granger causality based on the multivariate autoregressive (MVAR) model was used to estimate the effective causal connectivity among S1, S2, and M1. The estimated causality patterns of seven rats showed consistent unidirectional coupling between the somatosensory areas and the motor areas (S1 and S2 → M1), which coincided well with our hypothesis because the rats’ motor function was completely anesthetized. Our preliminary results suggest that cortico-cortical directional coupling can be successfully investigated with NIRS.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1610) Medical optics and biotechnology : Clinical applications
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 4, 2010
Revised Manuscript: February 16, 2010
Manuscript Accepted: February 18, 2010
Published: March 5, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Chang-Hwan Im, Young-Jin Jung, Seungduk Lee, Dalkwon Koh, Do-Won Kim, and Beop-Min Kim, "Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS)," Opt. Express 18, 5730-5739 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” Neuroimage 19(4), 1273–1302 (2003). [CrossRef] [PubMed]
  2. L. Lee, K. Friston, and B. Horwitz, “Large-scale neural models and dynamic causal modelling,” Neuroimage 30(4), 1243–1254 (2006). [CrossRef] [PubMed]
  3. O. David, S. J. Kiebel, L. M. Harrison, J. Mattout, J. M. Kilner, and K. J. Friston, “Dynamic causal modeling of evoked responses in EEG and MEG,” Neuroimage 30(4), 1255–1272 (2006). [CrossRef] [PubMed]
  4. S. J. Kiebel, O. David, and K. J. Friston, “Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization,” Neuroimage 30(4), 1273–1284 (2006). [CrossRef] [PubMed]
  5. L. Astolfi, F. Cincotti, D. Mattia, C. Babiloni, F. Carducci, A. Basilisco, P. M. Rossini, S. Salinari, L. Ding, Y. Ni, B. He, and F. Babiloni, “Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data,” Clin. Neurophysiol. 116(4), 920–932 (2005). [CrossRef] [PubMed]
  6. B. Abler, A. Roebroeck, R. Goebel, A. Höse, C. Schönfeldt-Lecuona, G. Hole, and H. Walter, “Investigating directed influences between activated brain areas in a motor-response task using fMRI,” Magn. Reson. Imaging 24(2), 181–185 (2006). [CrossRef] [PubMed]
  7. J. R. Sato, E. A. Junior, D. Y. Takahashi, M. de Maria Felix, M. J. Brammer, and P. A. Morettin, “A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality,” Neuroimage 31(1), 187–196 (2006). [CrossRef] [PubMed]
  8. W. Hesse, E. Möller, M. Arnold, and B. Schack, “The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies,” J. Neurosci. Methods 124(1), 27–44 (2003). [CrossRef] [PubMed]
  9. D. W. Gow, J. A. Segawa, S. P. Ahlfors, and F. H. Lin, “Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates,” Neuroimage 43(3), 614–623 (2008). [CrossRef] [PubMed]
  10. A. Korzeniewska, C. M. Crainiceanu, R. Kuś, P. J. Franaszczuk, and N. E. Crone, “Dynamics of event-related causality in brain electrical activity,” Hum. Brain Mapp. 29(10), 1170–1192 (2008). [CrossRef]
  11. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Phys. Rev. Lett. 76(11), 1804–1807 (1996). [CrossRef] [PubMed]
  12. G. Pfurtscheller and C. Andrew, “Event-Related changes of band power and coherence: methodology and interpretation,” J. Clin. Neurophysiol. 16(6), 512–519 (1999). [CrossRef] [PubMed]
  13. F. Mormann, K. Lehnertz, P. David, and C. E. Elger, “Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients,” Physica D 144(3-4), 358–369 (2000). [CrossRef]
  14. C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,” Econometrica 37, 414-& (1969).
  15. L. Ding, G. A. Worrell, T. D. Lagerlund, and B. He, “Ictal source analysis: localization and imaging of causal interactions in humans,” Neuroimage 34(2), 575–586 (2007). [CrossRef]
  16. F. De Vico Fallani, L. Astolfi, F. Cincotti, D. Mattia, M. G. Marciani, S. Salinari, J. Kurths, S. Gao, A. Cichocki, A. Colosimo, and F. Babiloni, “Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis,” Hum. Brain Mapp. 28(12), 1334–1346 (2007). [CrossRef] [PubMed]
  17. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006). [CrossRef] [PubMed]
  18. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006). [CrossRef] [PubMed]
  19. S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care 11(2), 288–295 (2009). [CrossRef] [PubMed]
  20. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009). [CrossRef] [PubMed]
  21. J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009). [CrossRef] [PubMed]
  22. N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: a mental rotation study with NIRS,” Neurosci. Lett. 430(1), 43–47 (2008). [CrossRef]
  23. F. Babiloni, F. Cincotti, C. Babiloni, F. Carducci, D. Mattia, L. Astolfi, A. Basilisco, P. M. Rossini, L. Ding, Y. Ni, J. Cheng, K. Christine, J. Sweeney, and B. He, “Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function,” Neuroimage 24(1), 118–131 (2005). [CrossRef]
  24. S. Aydore, and M. Mihcak, “On Temporal Connectivity of PFC Via Gauss-Markov Modeling of fNIRS Signals,” IEEE Trans. Biomed. Eng. (2009).
  25. G. Paxinos, and C. Watson, The rat brain in stereotaxic coordinates (Elsevier Academic Press, Amsterdam; Boston, 2005).
  26. C. I. Moore, S. B. Nelson, and M. Sur, “Dynamics of neuronal processing in rat somatosensory cortex,” Trends Neurosci. 22(11), 513–520 (1999). [CrossRef] [PubMed]
  27. F. Crespi, A. Bandera, M. Donini, C. Heidbreder, and L. Rovati, “Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS,” J. Neurosci. Methods 145(1-2), 11–22 (2005). [CrossRef] [PubMed]
  28. S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic Responses of Rat Brain Measured by Near-infrared Spectroscopy During Various Whisker Stimulations,” J. Opt. Soc. Korea 13(1), 166–170 (2009). [CrossRef]
  29. S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: A simultaneous NIRS-EEG study,” J. Biomed. Opt. (to be published). [PubMed]
  30. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  31. J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009). [CrossRef]
  32. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006). [CrossRef]
  33. G. Schwarz, “Estimating Dimension of a Model,” Ann. Stat. 6(2), 461–464 (1978). [CrossRef]
  34. J. Geweke, R. Meese, and W. Dent, “Comparing Alternative Tests of Causality in Temporal Systems - Analytic Results and Experimental-Evidence,” J. Econom. 21(2), 161–194 (1983). [CrossRef]
  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution (Cambridge University Press, 1993).
  36. J. Hamilton, Covariance-Stationary Vector Processes (Princeton University Press, 1994).
  37. A. K. Seth, ““Causal connectivity of evolved neural networks during behavior,” Network-Comp Neural. 16(1), 35–54 (2005). [CrossRef]
  38. A. Schlogl, “A comparison of multivariate autoregressive estimators,” Signal Process. 86(9), 2426–2429 (2006). [CrossRef]
  39. C. C. Petersen, “The functional organization of the barrel cortex,” Neuron 56(2), 339–355 (2007). [CrossRef] [PubMed]
  40. S. Chakrabarti and K. D. Alloway, “Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI,” J. Comp. Neurol. 498(5), 624–636 (2006). [CrossRef] [PubMed]
  41. L. Petreanu, D. Huber, A. Sobczyk, and K. Svoboda, “Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections,” Nat. Neurosci. 10(5), 663–668 (2007). [CrossRef] [PubMed]
  42. T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett. 85(2), 461–464 (2000). [CrossRef] [PubMed]
  43. G. Nolte, A. Ziehe, V. V. Nikulin, A. Schlögl, N. Krämer, T. Brismar, and K. R. Müller, “Robustly estimating the flow direction of information in complex physical systems,” Phys. Rev. Lett. 100(23), 234101 (2008). [CrossRef] [PubMed]
  44. A. Gallagher, M. Lassonde, D. Bastien, P. Vannasing, F. Lesage, C. Grova, A. Bouthillier, L. Carmant, F. Lepore, R. Beland, and D. K. Nguyen, ““Non-invasive pre-surgical investigation of a 10 year-old epileptic boy using simultaneous EEG-NIRS,” Seizure-Eur, J. Epilepsy 17, 576–582 (2008). [CrossRef]
  45. N. Roche-Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49(11), 1871–1880 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited