OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

Principal component analysis of dynamic fluorescence diffuse optical tomography images

Xin Liu, Daifa Wang, Fei Liu, and Jing Bai  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6300-6314 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Challenges remain in resolving drug distributions within small animals utilizing fluorescence diffuse optical tomography (FDOT). In this paper, we present a new method for detecting and visualizing organs with different kinetics utilizing principal component analysis (PCA). Indocynaine green (ICG) metabolic processes are simulated and imaged using FDOT. When applied to the time series of generated FDOT images, PCA provides a set of the principal components (PCs) which can represent spatial patterns associated with different kinetic behavior. Simulation and experiment studies are both performed to validate the performance of the proposed algorithm. The results suggest that we are able to extract and illustrate changes in ICG kinetic behavior between the heart and the lungs.

© 2010 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 10, 2009
Revised Manuscript: February 6, 2010
Manuscript Accepted: March 10, 2010
Published: March 12, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Xin Liu, Daifa Wang, Fei Liu, and Jing Bai, "Principal component analysis of dynamic fluorescence diffuse optical tomography images," Opt. Express 18, 6300-6314 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef] [PubMed]
  3. J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Physiol. 104(3), 795–802 (2008). [CrossRef] [PubMed]
  4. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000). [CrossRef] [PubMed]
  5. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005). [CrossRef] [PubMed]
  6. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007). [CrossRef] [PubMed]
  7. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004). [CrossRef] [PubMed]
  8. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  9. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005). [CrossRef] [PubMed]
  10. G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008). [CrossRef]
  11. S. V. Patwardhan, S. R. Bloch, S. A. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13(7), 2564–2577 (2005). [CrossRef] [PubMed]
  12. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003). [CrossRef] [PubMed]
  13. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005). [CrossRef] [PubMed]
  14. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007). [CrossRef] [PubMed]
  15. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004). [CrossRef] [PubMed]
  16. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  17. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007). [CrossRef]
  18. S. Kawata, K. Sasaki, and S. Minami, “Component analysis of spatial and spectral patterns in multispectral images. I. Basis,” J. Opt. Soc. Am. A 4(11), 2101–2106 (1987). [CrossRef] [PubMed]
  19. P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol. 54(11), 3595–3612 (2009). [CrossRef] [PubMed]
  20. F. Pedersen, M. Bergströme, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994). [CrossRef] [PubMed]
  21. K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993). [CrossRef] [PubMed]
  22. A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999). [CrossRef] [PubMed]
  23. C. G. Thomas, R. A. Harshman, and R. S. Menon, “Noise reduction in BOLD-based fMRI using component analysis,” Neuroimage 17(3), 1521–1537 (2002). [CrossRef] [PubMed]
  24. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007). [CrossRef] [PubMed]
  25. D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).
  26. A. Kak, and M. Slaney, Computerized Tomographic Imaging (New York: IEEE Press, 1987), ch. 7.
  27. K. Esbensen and P. Geladi, “Strategy of multivariate image analysis (MIA),” Chemom. Intell. Lab. Syst. 7(1-2), 67–86 (1989). [CrossRef]
  28. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  29. D. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17(24), 21376–21395 (2009). [CrossRef] [PubMed]
  30. V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm. 308(1-2), 200–204 (2006). [CrossRef] [PubMed]
  31. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, “Noncontact optical imaging in mice with full angular coverage and automatic surface extraction,” Appl. Opt. 46(17), 3617–3627 (2007). [CrossRef] [PubMed]
  32. D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited