OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy

Michael Shaw, Simon Hall, Steven Knox, Richard Stevens, and Carl Paterson  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6900-6913 (2010)
http://dx.doi.org/10.1364/OE.18.006900


View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we describe the wavefront aberrations that arise when imaging biological specimens using an optical sectioning microscope and generate simulated wavefronts for a planar refractive index mismatch. We then investigate the capability of two deformable mirrors for correcting spherical aberration at different focusing depths for three different microscope objective lenses. Along with measurement and analysis of the mirror influence functions we determine the optimum mirror pupil size and number of spatial modes included in the wavefront expansion and we present measurements of actuator linearity and hysteresis. We find that both mirrors are capable of correcting the wavefront aberration to improve imaging and greatly extend the depth at which diffraction limited imaging is possible.

© 2010 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(220.1000) Optical design and fabrication : Aberration compensation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: November 30, 2009
Revised Manuscript: March 10, 2010
Manuscript Accepted: March 11, 2010
Published: March 19, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Michael Shaw, Simon Hall, Steven Knox, Richard Stevens, and Carl Paterson, "Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy," Opt. Express 18, 6900-6913 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-7-6900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004). [CrossRef]
  2. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004). [CrossRef] [PubMed]
  3. M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007). [CrossRef] [PubMed]
  4. S. W. S. Hell, E. H. K., “Lens Aberrations in Confocal Fluorescence Microscopy,” in Handbook of Biological Confocal Microscopy, Second ed., J. B. Pawley, ed. (Plenum Press, 1995), pp. 347–354.
  5. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  6. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002). [CrossRef] [PubMed]
  7. M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006). [CrossRef]
  8. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007). [CrossRef]
  9. M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19(10), 2112–2120 (2002). [CrossRef]
  10. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000). [CrossRef]
  11. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  12. S. N. S. Reihani and L. B. Oddershede, “Confocal microscopy of thick specimens,” J. Biomed. Opt. 14(3), 030513 (2009). [CrossRef] [PubMed]
  13. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009). [CrossRef] [PubMed]
  14. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008). [CrossRef] [PubMed]
  15. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6(9), 175–185 (2000). [CrossRef] [PubMed]
  16. P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997). [CrossRef]
  17. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998). [CrossRef]
  18. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36(11), 2305–2312 (1997). [CrossRef] [PubMed]
  19. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16(2), 507–523 (2008). [CrossRef] [PubMed]
  20. M. Mansuripur, “Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetooptic Data-Storage Systems,” Appl. Opt. 30(22), 3154–3162 (1991). [CrossRef] [PubMed]
  21. Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006). [CrossRef]
  22. J. C. Lai, Z. H. Li, C. Y. Wang, and A. Z. He, “Experimental measurement of the refractive index of biological tissues by total internal reflection,” Appl. Opt. 44(10), 1845–1849 (2005). [CrossRef] [PubMed]
  23. M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004). [CrossRef] [PubMed]
  24. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006). [CrossRef] [PubMed]
  25. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47(6), 731–736 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited