OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

Optical solenoid beams

Sang-Hyuk Lee, Yohai Roichman, and David G. Grier  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6988-6993 (2010)
http://dx.doi.org/10.1364/OE.18.006988


View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce optical solenoid beams, diffractionless solutions of the Helmholtz equation whose diffraction-limited in-plane intensity peak spirals around the optical axis, and whose wavefronts carry an independent helical pitch. Unlike other collimated beams of light, appropriately designed solenoid beams have the noteworthy property of being able to exert forces on illuminated objects that are directed opposite to the direction of the light’s propagation. We demonstrate this through video microscopy observations of a colloidal sphere moving upstream along a holographically projected optical solenoid beam.

© 2010 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Physical Optics

History
Original Manuscript: February 1, 2010
Revised Manuscript: March 14, 2010
Manuscript Accepted: March 14, 2010
Published: March 19, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Sang-Hyuk Lee, Yohai Roichman, and David G. Grier, "Optical solenoid beams," Opt. Express 18, 6988-6993 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-7-6988


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. J. Durnin, "Exact-solutions for nondiffracting beams. 1. The scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  3. J. Durnin, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  4. J. Tervo and J. Turunen, "Rotating scale-invariant electromagnetic fields," Opt. Express 9, 9-15 (2001). [CrossRef] [PubMed]
  5. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008). [CrossRef] [PubMed]
  6. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  7. Y. Roichman and D. G. Grier, "Projecting extended optical traps with shape-phase holography," Opt. Lett. 31, 1675-1677 (2006). [CrossRef] [PubMed]
  8. Y. Roichman and D. G. Grier, "Three-dimensional holographic ring traps," Proc. SPIE 6483, 64830F (2007). [CrossRef]
  9. A. Vasara, J. Turunen, and A. T. Friberg, "Realization of general nondiffracting beams with computer-generated holograms," J. Opt. Soc. Am. A 6(11), 1748-1754 (1989). [CrossRef] [PubMed]
  10. P. L. Overfelt, "Scalar optical beams with helical symmetry," Phys. Rev. A 46, 3516-3522 (1992). [CrossRef] [PubMed]
  11. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001). [CrossRef]
  12. S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, "Nondiffracting beams: travelling, standing, rotating and spiral waves," Opt. Commun. 123, 225-233 (1996). [CrossRef]
  13. V. V. Kotlyar, V. A. Soifer, and S. N. Khonina, "An algorithm for the generation of laser beams with longitudinal periodicity: Rotating images," J. Mod. Opt. 44, 1409-1416 (1997). [CrossRef]
  14. P. Pääkkönen, J. Lautanen, M. Honkanen, M. Kuittinen, J. Turunen, S. N. Khonina, V. V. Kotlyar, V. A. Soifer, and A. T. Friberg, "Rotating optical fields: experimental demonstration with diffractive optics," J. Mod. Opt. 45, 2355-2369 (1998). [CrossRef]
  15. Z. Bouchal and J. Kyvalsky, "Controllable 3D spatial localization of light fields synthesized by non-diffracting modes," J. Mod. Opt. 51, 157-176 (2004). [CrossRef]
  16. J. Courtial, G. Whyte, Z. Bouchal, and J. Wagner, "Iterative algorithms for holographic shaping of non-diffracting and self-imaging light beams," Opt. Express 14, 2108-2116 (2006). [CrossRef] [PubMed]
  17. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  18. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  19. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13(15), 5831-5845 (2005). [CrossRef] [PubMed]
  20. S.-H. Lee and D. G. Grier, "Robustness of holographic optical traps against phase scaling errors," Opt. Express 13, 7458-7465 (2005). [CrossRef] [PubMed]
  21. Y. Roichman, I. Cholis, and D. G. Grier, "Volumetric imaging of holographic optical traps," Opt. Express 14, 10,907-10,912 (2006). [CrossRef]
  22. J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996). [CrossRef]
  23. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  24. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New J. Phys. 8, 43 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Supplementary Material


» Media 1: MOV (246 KB)     
» Media 2: MOV (1075 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited