OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses

Young-Zoon Yoon and Pietro Cicuta  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7076-7084 (2010)
http://dx.doi.org/10.1364/OE.18.007076


View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate advantages in terms of trapping force distribution and laser efficiency that come from using a telescopic pair of conical lenses (‘axicon’) to generate a ring-like beam, that in conjunction with a high NA objective is used for direct optical trapping with a focused evanescent field near a surface. Various field geometries are considered and compared. First, a Gaussian beam and a laser beam focused on the back focal plane of the objective are compared with each other, and they are scanned across the inlet aperture of the objective. This allows to detect the point of total internal refraction, and to study the trapping power near the surface. We confirm that the hollow beam generated by the conical lenses can generate an evanescent field after a high NA objective lens, and that micron-sized particles can be trapped stably. Finally, we apply the focused evanescent field to erythrocytes under flow, showing that cells are trapped against the flow and are held horizontally against the surface. This is a different equilibrium condition compared to conventional single beam traps, and it is particularly favorable for monitoring the cell membrane. We foresee the integration of this type of trapping with the imaging techniques based on total internal refraction fluoresence (TIRF).

© 2010 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(260.6970) Physical optics : Total internal reflection

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: January 19, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 11, 2010
Published: March 23, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Young Zoon Yoon and Pietro Cicuta, "Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses," Opt. Express 18, 7076-7084 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-7-7076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. D. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  3. J. Meiners and S. Quake, "Femtonewton force spectroscopy of single extended dna molecules," Phys. Rev. Lett. 84, 5014-5017 (2000). [CrossRef] [PubMed]
  4. Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, "Non-linear mechanical response of the red blood cell," Phys. Biol. 5, 036007 (2008). [CrossRef] [PubMed]
  5. D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001). [CrossRef] [PubMed]
  6. G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001). [CrossRef] [PubMed]
  7. N. Chronis and L. Lee, "Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall," Lab Chip 4, 125-130 (2004). [CrossRef] [PubMed]
  8. J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008). [CrossRef] [PubMed]
  9. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992). [CrossRef] [PubMed]
  10. S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994). [CrossRef]
  11. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995). [CrossRef]
  12. M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999). [CrossRef]
  13. S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005). [CrossRef]
  14. V. Ruiz-Cortes and J. Vite-Frias, "Lensless optical manipulation with an evanescent field," Opt. Express 16, 6600-6608 (2008). [CrossRef] [PubMed]
  15. D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004). [CrossRef] [PubMed]
  16. Y. Zhang and J. Bai, "Simple and high efficient optical trapping using a cylindrical lens and a single plane wave of incidence," Opt. Commun. 281, 4824-4828 (2008). [CrossRef]
  17. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007). [CrossRef]
  18. L. Huang, S. J. Maerkl, and O. Martin, "Integration of plasmonic trapping in a microfluidic environment," Opt. Express 17, 6018-6024 (2009). [CrossRef] [PubMed]
  19. M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008). [CrossRef]
  20. P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
  21. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999). [CrossRef]
  22. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009). [CrossRef]
  23. C. Mellor and C. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006). [CrossRef]
  24. M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004). [CrossRef]
  25. B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005). [CrossRef]
  26. M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007). [CrossRef] [PubMed]
  27. I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998). [CrossRef]
  28. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  29. D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited