OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging

Jae-Ho Han, Junghoon Lee, and Jin U. Kang  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7427-7439 (2010)
http://dx.doi.org/10.1364/OE.18.007427


View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of eliminating pixelization effect from en face optical coherence tomography (OCT) image when a fiber bundle is used as an OCT imaging probe is presented. We have demonstrated that applying a histogram equalization process before performing a weighted-averaged Gaussian smoothing filter to the original lower gray level intensity based image not only removes the structural artifact of the bundle but also enhances the image quality with minimum blurring of object’s image features. The measured contrast-to-noise ratio (CNR) for an image of the US Air Force test target was 14.7dB (4.9dB), after (before) image processing. In addition, by performing the spatial frequency analysis based on two-dimensional discrete Fourier transform (2-D DFT), we were able to observe that the periodic intensity peaks induced by the regularly arrayed structure of the fiber bundle can be efficiently suppressed by 41.0dB for the first nearby side lobe as well as to obtain the precise physical spacing information of the fiber grid. The proposed combined method can also be used as a straight forward image processing tool for any imaging system utilizing fiber bundle as a high-resolution imager.

© 2010 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(100.2980) Image processing : Image enhancement
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: January 26, 2010
Revised Manuscript: March 16, 2010
Manuscript Accepted: March 19, 2010
Published: March 25, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Jae-Ho Han, Junghoon Lee, and Jin U. Kang, "Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging," Opt. Express 18, 7427-7439 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-7-7427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009). [CrossRef]
  2. A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999). [CrossRef]
  3. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000). [CrossRef]
  4. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  5. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, and M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39(5), 698–703 (2000). [CrossRef]
  6. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005). [CrossRef] [PubMed]
  7. J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31(6), 772–774 (2006). [CrossRef] [PubMed]
  8. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993). [CrossRef] [PubMed]
  9. W. Göbel, J. N. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  10. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002). [CrossRef] [PubMed]
  11. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008). [CrossRef] [PubMed]
  12. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000). [CrossRef]
  13. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002). [CrossRef] [PubMed]
  14. S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008). [CrossRef] [PubMed]
  15. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  16. J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008). [CrossRef] [PubMed]
  17. V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007). [CrossRef]
  18. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008). [CrossRef] [PubMed]
  19. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007). [CrossRef] [PubMed]
  20. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47(25), 4560–4568 (2008). [CrossRef] [PubMed]
  21. J. Sun, Q. Huang, and J. A. Gilbert, “Comparing cross talk in doped scintillating-fiber bundles,” Appl. Opt. 34(9), 1536–1539 (1995). [CrossRef] [PubMed]
  22. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005). [CrossRef] [PubMed]
  23. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007). [CrossRef]
  24. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14(19), 8675–8684 (2006). [CrossRef] [PubMed]
  25. J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009). [CrossRef] [PubMed]
  26. W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009). [CrossRef]
  27. C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006). [CrossRef] [PubMed]
  28. M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005). [CrossRef] [PubMed]
  29. S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001). [CrossRef]
  30. M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999). [CrossRef]
  31. P. A. Dellenback, J. Macharivilakathu, and S. R. Pierce, “Contrast-enhancement techniques for particle-image velocimetry,” Appl. Opt. 39(32), 5978–5990 (2000). [CrossRef]
  32. T. Ishitani and M. Sato, “Evaluation of both image resolution and contrast-to-noise ratio in scanning electron microscopy,” J. Electron Microsc. (Tokyo) 56(4), 145–151 (2007). [CrossRef]
  33. P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009). [CrossRef] [PubMed]
  34. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009). [CrossRef]
  35. Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007). [CrossRef]
  36. K. Yu, L. Ji, L. Wang, and P. Xue, “How to optimize OCT image,” Opt. Express 9(1), 24–35 (2001). [CrossRef] [PubMed]
  37. J. S. Lim, Two-Dimensional Signal and Image Processing, (1990, Prentice Hall, Englewood, NJ.)
  38. R. C. Gonzalez, and R. E. Woods, Digital Image Processing, second ed.,( 2002, Prentice Hall, NJ.)
  39. J. R. Hook, and H. E. Hall, Solid State Physics, 2nd Ed. (1991, John Wiley & Sons Ltd., New York, NY.)
  40. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002). [CrossRef] [PubMed]
  41. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007). [CrossRef]
  42. R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13(7), 2337–2344 (2005). [CrossRef] [PubMed]
  43. C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008). [CrossRef]
  44. H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007). [CrossRef] [PubMed]
  45. S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited