OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 7 — Apr. 26, 2010

A novel first principles approach for the estimation of the sieve factor of blood samples

L. Northam and G. V. G. Baranoski  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7456-7469 (2010)
http://dx.doi.org/10.1364/OE.18.007456


View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light may traverse a turbid material, such as blood, without encountering any of its pigment containing structures, a phenomenon known as sieve effect. This phenomenon may result in a decrease in the amount of light absorbed by the material. Accordingly, the corresponding sieve factor needs to be accounted for in optical investigations aimed at the derivation of blood biophysical properties from light transmittance measurements. The existing procedures used for its estimation either lack the flexibility required for practical applications or are based on general formulas that incorporate other light and matter interaction phenomena such as detour (scattering) effects. In this paper, a ray optics framework is proposed to estimate the sieve factor for blood samples. It employs a first principles approach to account for the distribution, orientation and shape of the cells that contain hemoglobin, the essential (oxygen-carrying) pigment found in human blood. Within this framework, ray-casting techniques are used to determine the probability that light can traverse a blood sample without encountering any of these cells. The predictive capabilities of the proposed framework are demonstrated through a series of in silico experiments. Its effectiveness is further illustrated by visualizations depicting the different blood parameterizations considered in the simulations.

© 2010 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 29, 2010
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 15, 2010
Published: March 25, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
L. Northam and G. V. G. Baranoski, "A novel first principles approach for the estimation of the sieve factor of blood samples," Opt. Express 18, 7456-7469 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-7-7456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Amelink, T. Christiaanse, and H. J. C. M. Sterenborg, "Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation," Opt. Lett. 34, 1525-1527 (2009). [CrossRef] [PubMed]
  2. P. Agache, "Assessment of erythema and pallor," in "Measuring the Skin,", P. Agache and P. Humbert, eds. (Springer-Verlag, Berlin, 2004), pp. 591-601.
  3. A. N. Yaroslavsky, A. V. Priezzhev, J. Rodriquez, I. V. Yaroslavsky, and H. Battarbee, Optics of Blood (SPIE Press, Bellingham, 2002).
  4. V. V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (The International Society for Optical Engineering, Bellingham, 2000).
  5. W. M. Star, "Light dosimetry in vivo," Phys. Med. Biol. 42, 763-787 (1997). [CrossRef] [PubMed]
  6. Y. M. Serebrennikova, J. M. Smith, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "Quantitative interpretations of visible-nir reflectance spectra of blood," Opt. Express 16, 18215-18229 (2008). [CrossRef] [PubMed]
  7. V. V. Barun and A. P. Ivanov, "Effect of hemoglobin localization in erythrocytes on optical absorption by human blood," in "Tenth International Conference on Light Scattering by Non-spherical Particles," (Bodrun, Turkey, 2007), pp. 5-8.
  8. J. Laufer, D. T. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007). [CrossRef]
  9. D. Eng and G. Baranoski, "The application of photoacoustic absorption spectral data to the modeling of leaf optical properties in the visible range," IEEE Trans. Geosci. Remote Sens. 45, 4077-4086 (2007). [CrossRef]
  10. W. L. Butler, "Absorption spectroscopy in vivo: Theory and applications," Ann. Rev. Plant Physiol. 15, 451-470 (1964). [CrossRef]
  11. T. C. Vogelmann, "Plant Tissue Optics," Annu. Rev. Plant Physiol. Mol. Biol. 44, 231-251 (1993). [CrossRef]
  12. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988). [CrossRef] [PubMed]
  13. S. J. Matcher, M. Cope, and D. T. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy," Phys. Med. Biol. 39, 177-196 (1994). [CrossRef] [PubMed]
  14. E. I. Rabinowitch, Light absorption by pigments in the living cell (Interscience Publishers Inc., New York, 1951), vol. II, chap. 22.
  15. W. Rühle and A. Wild, "The intensification of absorbance changes in leaves by light dispersion," Planta 146, 551-557 (1979). [CrossRef]
  16. L. Fukshansky, Optical properties of plants (Academic Press, London, 1981).
  17. G. Baranoski and D. Eng, "An investigation on sieve and detour effects affecting the interaction of collimated and diffuse infrared radiation (750 to 2500 nm) with plant leaves," IEEE Trans. Geosci. Remote Sens. 45, 2593-2599 (2007). [CrossRef]
  18. J. Evans, T. Vogelmann, and W. Williams, "Chloroplast to leaf," in "Photosynthetic Adaptation Chloroplast to Landscape,", W. Smith, T. Vogelmann, and C. Critchley, eds. (Springer, NY, USA, 2004), chap. 2, pp. 15-41. Part 2: Sunlight Capture, Ecological Studies, Vol. 178.
  19. F. Garlaschi, G. Zucchelli, and R. Jennings, "Studies on light absorption and photochemical activity changes in chloroplast suspensions and leaves due to light scattering and light filtration across chloroplasts and vegetation layers," Photosynthesis Research 20, 207-220 (1989).
  20. L. N. M. Duysens, "The flattening of the absorption spectrum of suspensions as compared to that of solutions," Biochim. Biophys. Acta 19 (1956). [PubMed]
  21. R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 1416-1432 (1986). [CrossRef]
  22. L. Fukshansky, "On the theory of light absorption in non-homogeneous objects," J. Math. Biol. 6, 1416-1432 (1978). [CrossRef]
  23. J. M. Steinke and A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988). [CrossRef] [PubMed]
  24. A. T. Lovell, J. C. Hebden, J. C. Goldstone, and M. Cope, "Determination of the transport scattering coefficient of red blood cells [3597-121]," in "Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,", vol. 3597, B. Chance, R. R. Alfano, and B. J. Tromberg, eds. (1999), vol. 3597, p. 175.
  25. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007). [CrossRef] [PubMed]
  26. K. Kramer, J. Elam, G. Saxton, and W. E. Jr., "Influence of oxygen saturation, concentration and optical depth upon the red and near-infrared light transmittance of whole blood," Am. J. Physiology 165, 229-246 (1951).
  27. L. Northam, "A ray optics framework for the computation of the sieve effect factor for blood," Master’s thesis, University of Waterloo, Waterloo, Ontario (2010).
  28. T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh. "Light scattering by single erythrocyte: Comparison of different methods", J. Quant. Spectrosc. Radiat. Transfer 100, 444456 (2006). [CrossRef]
  29. R. Skalak and P. I. Branemark, "Deformation of Red Blood Cells in Capillaries," Science 164, 717-719 (1969). [CrossRef] [PubMed]
  30. S. Chei, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, and K. Skadron, "A performance study of general-purpose applications on graphics processors using cuda," J. Parallel Distrib. Comput. 68, 1370-1380 (2008). [CrossRef]
  31. L. Orf, "Scientific visualizations with pov-ray," Linux J. 2004, 2 (2004).
  32. N. M. Anderson and P. Sekelj, "Light-absorbing and scattering properties of nonhaemolysed blood," Phys. Med. Biol. 12, 173-184 (1967). [CrossRef] [PubMed]
  33. N. M. Anderson and P. Sekelj, "Reflection and transmission of light by thin films of nonhaemolysed blood," Phys. Med. Biol. 12, 185-192 (1967). [CrossRef] [PubMed]
  34. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Empirical model functions to calculate hematocritdependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007). [CrossRef] [PubMed]
  35. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999). [CrossRef]
  36. S. T. Flock, B. C. Wilson, and M. S. Patterson, "Total attenuation coefficient and scattering phase function of tissues and phantom materials at 633nm," Med. Phys. 14, 1742-1753 (1987). [CrossRef]
  37. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998). [CrossRef]
  38. A. Roggan, M. Friebel, K. Doershel, A. Hahn, and G. Mueller, "Optical properties of circulating human blood in the wavelength range 400-2500nm," J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]
  39. E. G. Popov, "Orientation of nonspherical cells in blood flowing through a vessel," Bull. Exp. Biol. Med. 86, 1556-1557 (1978). [CrossRef]
  40. J. H. McClendon and L. Fukshansky, "On the interpretation of absorption spectra of leaves - ii. The non-absorbed ray of the sieve effect and the mean optical pathlength in the remainder of the leaf," Photochem. Photobiol. 51, 211-216 (1990). [CrossRef]
  41. B. D. Ventura, C. Lemerle, K. Michalodimitrakis, and L. Serrano, "From in vivo to in silico biology and back," Nature 443, 527-533 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited