OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

Real time optical method for localization of inclusions embedded in turbid media

Anabela Da Silva, Nadia Djaker, Nicolas Ducros, Jean-Marc Dinten, and Philippe Rizo  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7753-7762 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (569 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple and fast time-domain method for localizing inclusions, fluorescent optical probes or absorbers, is presented. The method offers new possibilities for situations where complete tomographic measurements are not permitted by the examined object, for example in endoscopic examination of the human prostate or the oesophagus. Feasibility has been envisioned with a phantom study conducted on a point-like fluorochrome embedded in a diffusing medium mimicking the optical properties of biological tissues.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.7050) Medical optics and biotechnology : Turbid media
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 21, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: December 12, 2009
Published: March 30, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Anabela Da Silva, Nadia Djaker, Nicolas Ducros, Jean-Marc Dinten, and Philippe Rizo, "Real time optical method for localization of inclusions embedded in turbid media," Opt. Express 18, 7753-7762 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995). [CrossRef]
  2. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31(4), 1426–1433 (2006). [CrossRef] [PubMed]
  3. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007). [CrossRef] [PubMed]
  4. D. Piao, H. Xie, W. L. Zhang, J. S. Krasinski, G. L. Zhang, H. Dehghani, and B. W. Pogue, “Endoscopic, rapid near-infrared optical tomography,” Opt. Lett. 31(19), 2876–2878 (2006). [CrossRef] [PubMed]
  5. D. Piao, H. Dehghani, S. Jiang, S. Srinivasan, and B. W. Pogue, “Instrumentation for video-rate near-infrared diffuse optical tomography,” Rev. Sci. Instrum. 76(12), 124301 (2005). [CrossRef]
  6. C. Y. Li, R. Liengsawangwong, H. S. Choi, and R. Cheung, “Using a priori structural information from magnetic resonance imaging to investigate the feasibility of prostate diffuse optical tomography and spectroscopy: a simulation study,” Med. Phys. 34(1), 266–274 (2007). [CrossRef] [PubMed]
  7. K. K. H. Wang and T. C. Zhu, “Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography,” Opt. Express 17(14), 11665–11672 (2009). [CrossRef] [PubMed]
  8. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part I: simulation,” Opt. Express 16(22), 17484–17504 (2008). [CrossRef] [PubMed]
  9. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008). [CrossRef] [PubMed]
  10. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007). [CrossRef] [PubMed]
  11. D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29(19), 2258–2260 (2004). [CrossRef] [PubMed]
  12. S. H. Han and D. J. Hall, “Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method,” Opt. Lett. 33(9), 1035–1037 (2008). [CrossRef] [PubMed]
  13. Y. F. Chang and C. Y. Wang, “A 3-D image detection method of a surface opening crack in concrete using ultrasonic transducer arrays,” J. Nondestruct. Eval. 16(4), 193–203 (1997). [CrossRef]
  14. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16(5), 1066–1071 (1999). [CrossRef]
  15. C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68(4), 1574–1582 (1995). [CrossRef] [PubMed]
  16. M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the non invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  17. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  18. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999). [CrossRef] [PubMed]
  19. A. Laidevant, A. da Silva, M. Berger, and J.-M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006). [CrossRef] [PubMed]
  20. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990). [CrossRef]
  21. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007). [CrossRef] [PubMed]
  22. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008). [CrossRef] [PubMed]
  23. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005). [CrossRef] [PubMed]
  24. J. Boutet, L. Guyon, M. Debourdeau, J.-M. Dinten, D. Vray, and P. Rizo, “Advances in bi-modal optical and ultrasound detection of prostate cancer diagnosis, ” Proc. SPIE Vol. 7171, Multimodal Biomedical Imaging IV, F. S. Azar, X. Intes, Editors (2009)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited