OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device

Adrien Ponticorvo and Andrew K. Dunn  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8160-8170 (2010)
http://dx.doi.org/10.1364/OE.18.008160


View Full Text Article

Enhanced HTML    Acrobat PDF (3356 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study we present a novel imaging method that combines high resolution cerebral blood flow imaging with a highly flexible map of absolute pO2. In vivo measurements of pO2 in animals using phosphorescence quenching is a well established method, and is preferable over electrical probes which are inherently invasive and are limited to single point measurements. However, spatially resolved pO2 measurements using phosphorescence lifetime quenching typically require expensive cameras to obtain images of pO2 and often suffer from poor signal to noise. Our approach enables us to retain the high temporal resolution and sensitivity of single point detection of phosphorescence by using a digital micromirror device (DMD) to selectively illuminate arbitrarily shaped regions of tissue. In addition, by simultaneously using Laser Speckle Contrast Imaging (LSCI) to measure relative blood flow, we can better examine the relationship between blood flow and absolute pO2. We successfully used this instrument to study changes that occur during ischemic conditions in the brain with enough spatial resolution to clearly distinguish different regions. This novel instrument will provide researchers with an inexpensive and improved technique to examine multiple hemodynamic parameters simultaneously in the brain as well as other tissues.

© 2010 OSA

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 26, 2009
Revised Manuscript: March 30, 2010
Manuscript Accepted: April 1, 2010
Published: April 2, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Adrien Ponticorvo and Andrew K. Dunn, "Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device," Opt. Express 18, 8160-8170 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-8-8160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001). [CrossRef]
  2. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  3. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005). [CrossRef] [PubMed]
  4. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  5. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005). [CrossRef] [PubMed]
  6. N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007). [CrossRef] [PubMed]
  7. A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003). [PubMed]
  8. W. J. Whalen, J. Riley, and P. Nair, “A microelectrode for measuring intracellular PO2,” J. Appl. Physiol. 23(5), 798–801 (1967). [PubMed]
  9. E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999). [CrossRef] [PubMed]
  10. G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997). [CrossRef] [PubMed]
  11. R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997). [CrossRef] [PubMed]
  12. R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003). [CrossRef] [PubMed]
  13. S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum. 72(8), 3396 (2001). [CrossRef]
  14. S. A. Vinogradov, P. Grosul, V. Rozhkov, I. Dunphy, L. Shuman, B. W. Dugan, S. Evans, and D. F. Wilson, “Oxygen distributions in tissue measured by phosphorescence quenching,” Adv. Exp. Med. Biol. 510, 181–185 (2003). [CrossRef] [PubMed]
  15. I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging,” Science 286(5444), 1555–1558 (1999). [CrossRef] [PubMed]
  16. R. P. Briñas, T. Troxler, R. M. Hochstrasser, and S. A. Vinogradov, “Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna,” J. Am. Chem. Soc. 127(33), 11851–11862 (2005). [CrossRef] [PubMed]
  17. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006). [CrossRef] [PubMed]
  18. R. D. Shonat and P. C. Johnson, “Oxygen tension gradients and heterogeneity in venous microcirculation: a phosphorescence quenching study,” Am. J. Physiol. 272(5 Pt 2), H2233–H2240 (1997). [PubMed]
  19. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33(10), 1038–1040 (2008). [CrossRef] [PubMed]
  20. S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009). [CrossRef] [PubMed]
  21. D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, and J. Bennett, “Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging,” Appl. Opt. 44(25), 5239–5248 (2005). [CrossRef] [PubMed]
  22. A. Bednarkiewicz and M. P. Whelan, “Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator,” J. Biomed. Opt. 13(4), 041316 (2008). [CrossRef] [PubMed]
  23. A. Bednarkiewicz, M. Bouhifd, and M. P. Whelan, “Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging,” Appl. Opt. 47(9), 1193–1199 (2008). [CrossRef] [PubMed]
  24. S. H. Chao, M. R. Holl, S. C. McQuaide, T. T. H. Ren, S. A. Gales, and D. R. Meldrum, “Phosphorescence lifetime based oxygen micro-sensing using a digital micromirror device,” Opt. Express 15(17), 10681–10689 (2007). [CrossRef] [PubMed]
  25. T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt. 42(19), 4119–4124 (2003). [CrossRef] [PubMed]
  26. J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed Stimulation under Ca2+ Imaging of Cultured Neurons,” IEEE Transactions on Bio-Medical Engineering (2009).
  27. R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ramacciotti, G. Lovhoiden, and C. Vrancken, “Vein imaging: a new method of near infrared imaging, where a processed image is projected onto the skin for the enhancement of vein treatment,” Dermatol. Surg. 32(8), 1031–1038 (2006). [CrossRef] [PubMed]
  28. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging 27(12), 1728–1738 (2008). [CrossRef] [PubMed]
  29. S. A. Vinogradov, L. W. Lo, and D. F. Wilson, “Dendritic polyglutamic porphyrins: Probing porphyrin protection by oxygen dependent quenching of phosphorescence,” Chemistry 5(4), 1338–1347 (1999). [CrossRef]
  30. V. Rozhkov, D. F. Wilson, and S. A. Vinogradov, “Phosphorescent Pd porphyrin-dendrimers: Tuning core accessibility by varying the hydrophobicity of the dendritic matrix,” Macromolecules 35(6), 1991–1993 (2002). [CrossRef]
  31. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241(4873), 1649–1651 (1988). [CrossRef] [PubMed]
  32. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002). [CrossRef] [PubMed]
  33. D. L. Adkins, A. C. Voorhies, and T. A. Jones, “Behavioral and neuroplastic effects of focal endothelin-1 induced sensorimotor cortex lesions,” Neuroscience 128(3), 473–486 (2004). [CrossRef] [PubMed]
  34. K. A. Tennant and T. A. Jones, “Sensorimotor behavioral effects of endothelin-1 induced small cortical infarcts in C57BL/6 mice,” J. Neurosci. Methods 181(1), 18–26 (2009). [CrossRef] [PubMed]
  35. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985). [CrossRef] [PubMed]
  36. B. D. Watson, R. Prado, A. Veloso, J. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke 33, 428–434 (2002). [CrossRef] [PubMed]
  37. H. Yao, H. Sugimori, K. Fukuda, J. Takada, H. Ooboshi, T. Kitazono, S. Ibayashi, and M. Iida, “Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats,” Stroke 34(11), 2716–2721 (2003). [CrossRef] [PubMed]
  38. J. P. Dreier, J. Kleeberg, G. Petzold, J. Priller, O. Windmüller, H. D. Orzechowski, U. Lindauer, U. Heinemann, K. M. Einhäupl, and U. Dirnagl, “Endothelin-1 potently induces Leão’s cortical spreading depression in vivo in the rat: a model for an endothelial trigger of migrainous aura?” Brain 125(1), 102–112 (2002). [CrossRef] [PubMed]
  39. J. P. Dreier, J. Kleeberg, M. Alam, S. Major, M. Kohl-Bareis, G. C. Petzold, I. Victorov, U. Dirnagl, T. P. Obrenovitch, and J. Priller, “Endothelin-1-induced spreading depression in rats is associated with a microarea of selective neuronal necrosis,” Exp. Biol. Med. (Maywood) 232(2), 204–213 (2007).
  40. A. A. P. Leao, “Spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7, 359–390 (1944).
  41. A. Mayevsky and H. R. Weiss, “Cerebral blood flow and oxygen consumption in cortical spreading depression,” J. Cereb. Blood Flow Metab. 11(5), 829–836 (1991). [CrossRef] [PubMed]
  42. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008). [CrossRef] [PubMed]
  43. A. J. Strong, P. J. Anderson, H. R. Watts, D. J. Virley, A. Lloyd, E. A. Irving, T. Nagafuji, M. Ninomiya, H. Nakamura, A. K. Dunn, and R. Graf, ““Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex,” Brain,” J. Neurol. 130, 995–1008 (2007).
  44. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, E. H. Lo, M. A. Moskowitz, and C. Ayata, ““Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia,” Brain,” J. Neurol. 130, 1631–1642 (2007).
  45. H. Hou, O. Y. Grinberg, S. Taie, S. Leichtweis, M. Miyake, S. Grinberg, H. Xie, M. Csete, and H. M. Swartz, “Electron paramagnetic resonance assessment of brain tissue oxygen tension in anesthetized rats,” Anesthesia and Analgesia 96, 1467–72, table of contents (2003).
  46. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001). [CrossRef] [PubMed]
  47. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited