OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery

Alexander Wong, Akshaya Mishra, Kostadinka Bizheva, and David A. Clausi  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8338-8352 (2010)
http://dx.doi.org/10.1364/OE.18.008338


View Full Text Article

Enhanced HTML    Acrobat PDF (1951 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An important image post-processing step for optical coherence tomography (OCT) images is speckle noise reduction. Noise in OCT images is multiplicative in nature and is difficult to suppress due to the fact that in addition the noise component, OCT speckle also carries structural information about the imaged object. To address this issue, a novel speckle noise reduction algorithm was developed. The algorithm projects the imaging data into the logarithmic space and a general Bayesian least squares estimate of the noise-free data is found using a conditional posterior sampling approach. The proposed algorithm was tested on a number of rodent (rat) retina images acquired in-vivo with an ultrahigh resolution OCT system. The performance of the algorithm was compared to that of the state-of-the-art algorithms currently available for speckle denoising, such as the adaptive median, maximum a posteriori (MAP) estimation, linear least squares estimation, anisotropic diffusion and wavelet-domain filtering methods. Experimental results show that the proposed approach is capable of achieving state-of-the-art performance when compared to the other tested methods in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation, and equivalent number of looks (ENL) measures. Visual comparisons also show that the proposed approach provides effective speckle noise suppression while preserving the sharpness and improving the visibility of morphological details, such as tiny capillaries and thin layers in the rat retina OCT images.

© 2010 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 21, 2010
Revised Manuscript: March 24, 2010
Manuscript Accepted: March 30, 2010
Published: April 6, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Alexander Wong, Akshaya Mishra, Kostadinka Bizheva, and David A. Clausi, "General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery," Opt. Express 18, 8338-8352 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-8-8338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000). [CrossRef]
  2. J. Lee, "Speckle suppression and analysis for synthetic aperture radar," Opt. Eng. 25(5), 636-643 (1986).
  3. V. Frost, J. Stiles, K. Shanmugan, and J. Holtzman, "A model for radar images and its application to adaptive digital filtering for multiplicative noise," IEEE Trans. Pattern Anal. Machine Intell. 4(2), 157-166 (1982). [CrossRef]
  4. D. Kuan, A. Sawchuk, T. Strand, and P. Chavel, "Adaptive restoration of images with speckle," IEEE Trans. Acoust. Speech Signal Process. 35(3), 373-383 (1987). [CrossRef]
  5. T. Loupas, W. Mcdicken, and P. Allen, "An adaptive weighted median filter for speckle suppression in medical ultrasound images," IEEE Trans. Circuits Syst. 36(1), 129-135 (1989). [CrossRef]
  6. A. Lopes, E. Nezry, R. Touzi, and H. Laur, "Structure detection and adaptive speckle filtering in SAR images," Int. J. Remote Sens. 14(9), 1735-1758 (1993). [CrossRef]
  7. D. C. Adler, T. H. Ko, and J. G. Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter, Opt. Lett. 29(24), 2878-2880 (2004). [CrossRef]
  8. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography images using digital filtering," J. Opt. Soc. Am. A 24(7), 1901-1910 (2007). [CrossRef]
  9. A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, "A versatile wavelet domain noise filtration technique for medical imaging," IEEE Trans. Med. Imag. 22(3), 323-331 (2003). [CrossRef]
  10. P. Puvanathasan and K. Bizheva, "Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set," Opt. Express 15(24), 15747-15758 (2007). [CrossRef] [PubMed]
  11. S. Aja, C. Alberola, and J. Ruiz, "Fuzzy anisotropic diffusion for speckle filtering," Proc. IEEE ICASSP 2, 1261-1264 (2001).
  12. Y. Yu and S. Acton, "Speckle reducing anisotropic diffusion," IEEE Trans. Image Process. 11(11), 1260-1270 (2002). [CrossRef]
  13. P. Puvanathasan and K. Bizheva, "Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images," Opt. Express 17(2), 733-746 (2009). [CrossRef] [PubMed]
  14. D. Fernandez, H. Salinas, and C. Puliafito, "Automated detection of retinal layer structures on optical coherence tomography images," Opt. Express 13, 10200-10216 (2005). [CrossRef]
  15. K. Yung, S. Lee, and J. Schmitt, "Phase-Domain Processing of Optical Coherence Tomography Images," J. Biomed. Opt. 4(1), 125-136 (1999). [CrossRef]
  16. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  17. J. Schmitt, S. Xiang, and K. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  18. J. Kim, D. Miller, E. Kim, S. Oh, J. Oh, and T. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 640349 (2005).
  19. M. Pircher, E. Gtzinger, R. Leitgeb, A.F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003). [CrossRef] [PubMed]
  20. N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003). [CrossRef] [PubMed]
  21. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, "Angle resolved Optical Coherence Tomography with sequential angular selectivity for speckle reduction," Opt. Express 15, 6200-6209 (2007). [CrossRef] [PubMed]
  22. T. Jorgensen, L. Thrane, M. Mogensen, F. Pedersen, and P. Andersen, "Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method," in Proc. SPIE 6627, Munich, Germany 66270P (2007).
  23. J. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42(7), 1427-1439 (1997). [CrossRef] [PubMed]
  24. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000). [CrossRef]
  25. D. Popescu, M. Hewkoa, and M. Sowa, "Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample," Opt. Commun. 1(1), 247-251 (2007). [CrossRef]
  26. M. Kobayashi, H. Hanafusa, K. Takada, and J. Noda, "Polarization-Independent Interferometric Optical-Time-Domain Reflectometer," J. Lightwave Technol. 9, 623-628 (1991). [CrossRef]
  27. W. Hastings, "Monte Carlo sampling methods using Markov chains and their applications," Biometrika 57(1), 97-109 (1970). [CrossRef]
  28. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, "High-speed, high-resolution Fourier domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region," Opt. Lett. 33(21), 2479-2481 (2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited