OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography

Kazuhiro Kurokawa, Kazuhiro Sasaki, Shuichi Makita, Masahiro Yamanari, Barry Cense, and Yoshiaki Yasuno  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8515-8527 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional high-isotropic-resolution retinal images in vivo. We developed AO-OCT with a 1.03-μm probing beam and demonstrated high-penetration, high-resolution retinal imaging. Axial scans are acquired with a speed of 47,000 lines/s. AO closed loop is configured with a single deformable mirror. Seven eyes of 7 normal subjects were examined. Signal enhancement was found for all subjects. A rippled interface between nerve fiber layer and ganglion cell layer, boundary between ganglion cell layer and inner plexiform layer, and chorioscleral interface were identified. Simultaneous high-resolution and high-penetration choroidal imaging may be useful for microstructural investigation of photoreceptors and glaucomatous nerve-fiber abnormalities.

© 2010 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 13, 2010
Revised Manuscript: April 1, 2010
Manuscript Accepted: April 7, 2010
Published: April 8, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Kazuhiro Kurokawa, Kazuhiro Sasaki, Shuichi Makita, Masahiro Yamanari, Barry Cense, and Yoshiaki Yasuno, "Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography," Opt. Express 18, 8515-8527 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8. [CrossRef]
  2. G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) http://link.aip.org/link/?JBO/3/21/1.
  3. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999), http://jjap.ipap.jp/link?JJAP/38/6133/. [CrossRef]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889. [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067. [CrossRef] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183. [CrossRef] [PubMed]
  7. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-19-1745. [CrossRef] [PubMed]
  8. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480. [CrossRef] [PubMed]
  9. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).
  10. T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, "Spectral domain optical coherence tomography and glaucoma," Int. Ophthalmol. Clin. 48, 29-45 (2008), http://dx.doi.org/10.1097/IIO.0b013e318187e801. [CrossRef] [PubMed]
  11. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," Appl. Opt. 12, 555-563 (1973), http://ao.osa.org/abstract.cfm?URI=ao-12-3-555. [CrossRef] [PubMed]
  12. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1. [CrossRef]
  13. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411. [CrossRef] [PubMed]
  14. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252. [CrossRef] [PubMed]
  15. M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963. [CrossRef] [PubMed]
  16. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121. [CrossRef] [PubMed]
  17. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403. [CrossRef] [PubMed]
  18. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1. [CrossRef] [PubMed]
  19. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).
  20. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272. [CrossRef]
  21. B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869. [CrossRef]
  22. Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1. [CrossRef] [PubMed]
  23. E. J. Fernández and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-26-21199. [CrossRef] [PubMed]
  24. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997), http://josaa.osa.org/abstract.cfm?URI=josaa-14-11-2884. [CrossRef]
  25. A. Roorda, F. Romero-Borja, W. J. D. III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-405. [PubMed]
  26. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006), http: //www.opticsexpress.org/abstract.cfm?URI=oe-14-8-3354. [CrossRef] [PubMed]
  27. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313. [CrossRef]
  28. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors," J. Opt. Soc. Am. A 24, 1305-1312 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1305. [CrossRef]
  29. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, "Compact adaptive optics line scanning ophthalmoscope," Opt. Express 17, 10242-10258 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-12-10242. [CrossRef] [PubMed]
  30. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142. [CrossRef] [PubMed]
  31. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4792. [CrossRef] [PubMed]
  32. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8532. [CrossRef] [PubMed]
  33. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028. [CrossRef] [PubMed]
  34. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-8-3345. [CrossRef] [PubMed]
  35. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900. [CrossRef] [PubMed]
  36. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373. [CrossRef]
  37. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-8126. [CrossRef] [PubMed]
  38. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008), http://ol.osa.org/abstract.cfm?URI=ol-33-1-22. [CrossRef]
  39. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-15-11083. [CrossRef] [PubMed]
  40. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J.W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17, 4084-4094 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4084. [CrossRef] [PubMed]
  41. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, "Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina," Opt. Express 17, 19382-19400 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-22-19382. [CrossRef] [PubMed]
  42. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, "Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics," Opt. Express 17, 21634-21651 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-24-21634. [CrossRef] [PubMed]
  43. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, "Adaptive optics retinal scanner for one-micrometer light source," Opt. Express 18, 1406-1418 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-1406. [CrossRef] [PubMed]
  44. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406. [CrossRef] [PubMed]
  45. F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, "Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography," Opt. Express 18, 1358-1372 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-1358. [CrossRef] [PubMed]
  46. Z136 Committee, American National Standard for Safe Use of Lasers: ANSI Z136.1-2000 (Laser Institute of America, 2003).
  47. F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1250. [CrossRef]
  48. H. Hofer, P. Artal, B. Singer, J. L. Aragón and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001), http://josaa.osa.org/abstract.cfm?URI=josaa-18-3-497. [CrossRef]
  49. T. Wilson and A. R. Carlini, "Size of the detector in confocal imaging systems," Opt. Lett. 12, 227-229 (1987), http://ol.osa.org/abstract.cfm?URI=ol-12-4-227. [CrossRef] [PubMed]
  50. E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http:// www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8184. [CrossRef] [PubMed]
  51. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213. [CrossRef] [PubMed]
  52. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995), http://josaa.osa.org/abstract.cfm?URI=josaa-12-2-195. [CrossRef]
  53. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1. [CrossRef] [PubMed]
  54. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002), http://journalofvision.org/2/5/4/. [CrossRef]
  55. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003), http://www.iovs.org/cgi/content/abstract/44/ 10/4580. [CrossRef] [PubMed]
  56. B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-11-2318. [CrossRef]
  57. S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-12-2598. [CrossRef]
  58. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16141. [CrossRef] [PubMed]
  59. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical stiles-crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6486. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited