OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser

Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Evgeny V. Shashkov, Ekaterina I. Galanzha, and Vladimir P. Zharov  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8605-8620 (2010)
http://dx.doi.org/10.1364/OE.18.008605


View Full Text Article

Enhanced HTML    Acrobat PDF (1614 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In vivo photoacoustic (PA) flow cytometry (PAFC) has great potential for detecting disease-associated biomarkers in blood and lymph flow, as well as real-time control of the efficacy of photothermal (PT) and other therapies through the counting of circulating abnormal objects. We report on a high speed PAFC with a Yb-doped fiber laser having a 0.5-MHz pulse repetition rate at a wavelength of 1064 nm, pulse width of 10 ns, and energy up to 100 µJ. This is the first biomedical application of PA and PT techniques operating at the highest pulse repetition rate of nanosecond lasers that provide 100-fold enhancement in detection speed of carbon nanotube clusters, as well as real-time monitoring of the flow velocity of individual targets through the width of PA signals. The laser pulse rate limits for PT and PA techniques depending on the sizes of laser beam and targets and flow velocity are discussed. We propose time-overlapping mode and generation of periodic nano- and microbubbles as PA-signal and PT-therapy amplifiers, including discrimination of small absorbing targets among large ones. Taking into account the relatively low level of background signals from most biotissues at 1064 nm, our data suggest that a nanosecond Yb-doped fiber laser operating at high pulse repetition rate could be a promising optical source for time-resolved PA and PT cytometry, imaging, microscopy, and therapy, including detection of nanoparticles and cells flowing at velocities up to 2.5 m/s.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.1530) Medical optics and biotechnology : Cell analysis
(350.4990) Other areas of optics : Particles
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 5, 2010
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 29, 2010
Published: April 9, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Evgeny V. Shashkov, Ekaterina I. Galanzha, and Vladimir P. Zharov, "Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser," Opt. Express 18, 8605-8620 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-8-8605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. P. Zharov, and V. S. Letokhov, Laser optoacoustic spectroscopy (New York: Springer-Verlag, 1986).
  2. S. E. Bialkowski, Photothermal spectroscopy methods for chemical analysis (A Wiley-Interscience publication, New York, 1996).
  3. L. Wang, ed., Photoacoustic Imaging and Spectroscopy (Taylor & Francis/CRC Press, 2009).
  4. V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “Photothermal imaging of moving cells in lymph and blood flow in vivo,” Proc. SPIE 5320, 256–263 (2004).
  5. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006). [CrossRef] [PubMed]
  6. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007). [CrossRef] [PubMed]
  7. E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73A(10), 884–894 (2008). [CrossRef]
  8. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009). [CrossRef] [PubMed]
  9. J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009). [CrossRef] [PubMed]
  10. E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009). [CrossRef] [PubMed]
  11. E. I. Galanzha, J. W. Kim, and V. P. Zharov, “Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing circulating cancer stem cells,” J. Biophotonics 2(12), 725–735 (2009). [CrossRef] [PubMed]
  12. H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system,” Opt. Express 15(24), 16261–16269 (2007). [CrossRef] [PubMed]
  13. R. M. Weight, J. A. Viator, P. S. Dale, C. W. Caldwell, and A. E. Lisle, “Photoacoustic detection of metastatic melanoma cells in the human circulatory system,” Opt. Lett. 31(20), 2998–3000 (2006). [CrossRef] [PubMed]
  14. W. He, H. F. Wang, L. C. Hartmann, J. X. Cheng, and P. S. Low, “In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry,” Proc. Natl. Acad. Sci. U.S.A. 104(28), 11760–11765 (2007). [CrossRef] [PubMed]
  15. V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “Photothermal flow cytometry in vitro for detection and imaging of individual moving cells,” Cytometry A 71A(4), 191–206 (2007). [CrossRef]
  16. E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles,” J Biophotonics 2(8-9), 528–539 (2009). [CrossRef] [PubMed]
  17. I. Y. Petrova, R. O. Esenaliev, Y. Y. Petrov, H. P. E. Brecht, C. H. Svensen, J. Olsson, D. J. Deyo, and D. S. Prough, “Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study,” Opt. Lett. 30(13), 1677–1679 (2005). [CrossRef] [PubMed]
  18. Y. Y. Petrov, D. S. Prough, D. J. D. Deyo, M. M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology 102(1), 69–75 (2005). [CrossRef]
  19. I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express 17(9), 7285–7294 (2009). [CrossRef] [PubMed]
  20. S. H. Holan and J. A. Viator, “Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction,” Phys. Med. Biol. 53(227–N), 236 (2008). [CrossRef]
  21. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  22. H. M. Shapiro, Practical Flow Cytometry (Wiley-Liss, New York, 2003).
  23. D. A. Watson, L. O. Brown, D. R. Gaskill, M. Naivar, S. W. Graves, S. K. Doorn, and J. P. Nolan, “A flow cytometer for the measurement of Raman spectra,” Cytometry A 73A(2), 119–128 (2008). [CrossRef]
  24. J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007). [CrossRef] [PubMed]
  25. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973). [CrossRef] [PubMed]
  26. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin (VSP, Utrecht 2000).
  27. V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005). [CrossRef]
  28. G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat. 4(5), 559–566 (2005). [PubMed]
  29. H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009). [CrossRef]
  30. A. N. S. Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2000, (American National Standards Institute, Washington, DC, 2000).
  31. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond) 1(4), 473–480 (2006). [CrossRef]
  32. H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler flow measurement in optically scattering media,” Appl. Phys. Lett. 91(26), 264103 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited