OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

Yun-Sheng Chen, Wolfgang Frey, Seungsoo Kim, Kimberly Homan, Pieter Kruizinga, Konstantin Sokolov, and Stanislav Emelianov  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 8867-8878 (2010)
http://dx.doi.org/10.1364/OE.18.008867


View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 18, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: March 30, 2010
Published: April 13, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Yun-Sheng Chen, Wolfgang Frey, Seungsoo Kim, Kimberly Homan, Pieter Kruizinga, Konstantin Sokolov, and Stanislav Emelianov, "Enhanced thermal stability of silica-coated 
gold nanorods for photoacoustic imaging and image-guided therapy," Opt. Express 18, 8867-8878 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-9-8867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998). [CrossRef] [PubMed]
  2. S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007). [CrossRef] [PubMed]
  3. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009). [CrossRef] [PubMed]
  4. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999). [CrossRef]
  5. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  6. S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008). [CrossRef] [PubMed]
  7. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007). [CrossRef] [PubMed]
  8. P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008). [CrossRef]
  9. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009). [CrossRef] [PubMed]
  10. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008). [CrossRef] [PubMed]
  11. S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008). [CrossRef]
  12. J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008). [CrossRef] [PubMed]
  13. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003). [CrossRef] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  15. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  16. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998). [CrossRef]
  17. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006). [CrossRef] [PubMed]
  18. A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004). [CrossRef]
  19. Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005). [CrossRef] [PubMed]
  20. Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009). [CrossRef]
  21. Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007). [CrossRef]
  22. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001). [CrossRef]
  23. I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006). [CrossRef]
  24. A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008). [CrossRef]
  25. N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009). [CrossRef] [PubMed]
  26. I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008). [CrossRef]
  27. Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).
  28. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003). [CrossRef]
  29. W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968). [CrossRef]
  30. Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002). [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  32. L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007). [CrossRef]
  33. M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001). [CrossRef]
  34. M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited