OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide

Qing Liu and Kin Seng Chiang  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8963-8968 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2191 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a planar long-period grating filter based on coupling between the long-range surface plasmon mode and a cladding mode of a fully buried metal stripe waveguide. Using a 2.5-mm-long corrugation grating produced along the surface of an epoxy-clad aluminum stripe waveguide, we achieve a rejection band with a contrast of ~18 dB at the wavelength ~1500 nm, which can be tuned by ~25 nm with a temperature change of ~30°C. The experimental results agree closely with the simulation results. The filter could find applications in surface-plasmon-based integrated-optic circuits and biosensors.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

Original Manuscript: February 22, 2010
Revised Manuscript: April 6, 2010
Manuscript Accepted: April 7, 2010
Published: April 14, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Qing Liu and Kin Seng Chiang, "Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide," Opt. Express 18, 8963-8968 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  4. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  5. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-3-977 . [CrossRef] [PubMed]
  6. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006). [CrossRef]
  7. S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009). [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  9. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006). [CrossRef]
  10. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4674 . [CrossRef] [PubMed]
  11. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006). [CrossRef]
  12. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009). [CrossRef]
  13. Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005). [CrossRef]
  14. J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith., “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47(21), 3892–3900 (2008). [CrossRef] [PubMed]
  15. S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004). [CrossRef]
  16. E. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).
  17. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003). [CrossRef]
  18. W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited