OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Optofluidic dye laser in a foil

Christoph Vannahme, Mads Brøkner Christiansen, Timo Mappes, and Anders Kristensen  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9280-9285 (2010)
http://dx.doi.org/10.1364/OE.18.009280


View Full Text Article

Enhanced HTML    Acrobat PDF (1811 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

First order distributed feedback optofluidic dye lasers embedded in a 350 µm thick TOPAS® foil are demonstrated. They are designed in order to give high output pulse energies. Microfluidic channels and first order distributed feedback gratings are fabricated in parallel by thermal nanoimprint into a 100 µm foil. The channels are closed by thermal bonding with a 250 µm thick foil and filled with 5·10−3 mol/l Pyrromethene 597 in benzyl alcohol. The fluid forms a liquid core single mode slab waveguide of 1.6 µm height on a nanostructured grating area of 0.5 × 0.5 mm2. This results in a large gain volume. Two grating periods of 185 nm and 190 nm yield single mode laser light emission at 566 nm and 581 nm respectively. High emitted pulse energies of more than 1 µJ are reported. Stable operation for more than 25 min at 10 Hz pulse repetition rate is achieved.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2050) Lasers and laser optics : Dye lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 24, 2010
Revised Manuscript: April 10, 2010
Manuscript Accepted: April 11, 2010
Published: April 19, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Christoph Vannahme, Mads Brøkner Christiansen, Timo Mappes, and Anders Kristensen, "Optofluidic dye laser in a foil," Opt. Express 18, 9280-9285 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-9-9280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13(1), 344–351 (2005). [CrossRef] [PubMed]
  2. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  4. M. Gersborg-Hansen and A. Kristensen, “Optofluidic third order distributed feedback dye laser,” Appl. Phys. Lett. 89(10), 103518 (2006). [CrossRef]
  5. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009). [CrossRef]
  6. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009). [CrossRef]
  7. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006). [CrossRef] [PubMed]
  8. M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007). [CrossRef] [PubMed]
  9. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006). [CrossRef] [PubMed]
  10. W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010). [CrossRef]
  11. TOPAS, 6013 COC, acquired from TOPAS Advanced Polymers, Inc., www.topas.com .
  12. B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, “Topas based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography,” J. Vac. Sci. Technol. B 23(6), 2944–2949 (2005). [CrossRef]
  13. R. Francesconi, A. Bigi, and F. Comelli, “Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) + Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure,” J. Chem. Eng. Data 50(4), 1404–1408 (2005). [CrossRef]
  14. Pyrromethene 597, CAS Nr. 137829–79–9, acquired from Exciton Inc., www.exciton.com .
  15. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, T. Mappes, and U. Lemmer, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited