OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

The PDMS-based microfluidic channel fabricated by synchrotron radiation stimulated etching

Tingchao He, Changshun Wang, Tsuneo Urisu, Takeshi Nagahiro, Ryugo Tero, and Rong Xia  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9733-9738 (2010)
http://dx.doi.org/10.1364/OE.18.009733


View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Micro pattern on PDMS surface has been achieved by using synchrotron radiation (SR) stimulated etching. The experimental results indicated that SR stimulated etching has many advantages, such as extremely high etching rate (as large as 40-50 μ m per 10 min), area-selectivity and anisotropy at room temperature, high spatial resolution. Combining the SR stimulated etching with photolithography, a PDMS-based microfluidic channel was obtained. The aim of this work is to develop a three-dimensional microfluidic channel with a special through hole, which is beneficial for cell differentiation, functionality and longevity and cannot be fabricated by conventional direct tooling techniques.

© 2010 OSA

OCIS Codes
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation

ToC Category:
X-ray Optics

History
Original Manuscript: January 21, 2010
Revised Manuscript: April 11, 2010
Manuscript Accepted: April 11, 2010
Published: April 23, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Tingchao He, Changshun Wang, Tsuneo Urisu, Takeshi Nagahiro, Ryugo Tero, and Rong Xia, "The PDMS-based microfluidic channel fabricated by synchrotron radiation stimulated etching," Opt. Express 18, 9733-9738 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-9-9733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006). [CrossRef] [PubMed]
  2. A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999). [CrossRef] [PubMed]
  3. A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001). [CrossRef] [PubMed]
  4. A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000). [CrossRef] [PubMed]
  5. G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).
  6. S. G. Li, Z. G. Xu, A. Mazzeo, D. J. Burns, G. Fu, M. Dirckx, V. Shilpiekandula, X. Chen, N. C. Nayak, E. Wong, S. F. Yoon, Z. P. Fang, K. Youcef-Toumi, D. Hardt, S. B. Tor, C. Y. Yue, and J. H. Chun, “Review of production of microfluidic devices: material, manufacturing and metrology,” Proc. SPIE 6993, 69930F1–12 (2008).
  7. C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003). [CrossRef]
  8. J. Narasimhan and I. Papautsky, “Rapid fabrication of hot embossing tools using PDMS,” Proc. SPIE 4982, 110–119 (2003). [CrossRef]
  9. Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005). [CrossRef]
  10. A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007). [CrossRef]
  11. M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009). [CrossRef]
  12. W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007). [CrossRef]
  13. C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002). [CrossRef]
  14. T. Urisu and H. Kyuragi, “Synchrotron radiation-excited chemical-vapor deposition and etching,” J. Vac. Sci. Technol. B 5(5), 1436–1440 (1987). [CrossRef]
  15. C. S. Wang and T. Urisu, “Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask,” Appl. Surf. Sci. 242(3-4), 276–280 (2005). [CrossRef]
  16. C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006). [CrossRef]
  17. P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited