OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Long range surface plasmon-coupled fluorescence emission for biosensor applications

Koji Toma, Jakub Dostalek, and Wolfgang Knoll  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11090-11099 (2011)
http://dx.doi.org/10.1364/OE.19.011090


View Full Text Article

Enhanced HTML    Acrobat PDF (1552 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A biosensor scheme that employs long range surface plasmons (LRSPs) for the efficient excitation and collection of fluorescence light from fluorophore-labeled biomolecules captured in a three-dimensional hydrogel matrix is discussed. This new approach to plasmon-enhanced fluorescence (PEF) is experimentally and theoretically investigated by using the Kretschmann configuration of attenuated total reflection (ATR) method. A layer structure supporting LRSPs that consists of a low refractive index fluoropolymer layer, a thin gold film and a large binding capacity N-isopropylacrylamide (NIPAAm)-based hydrogel matrix swollen in an aqueous sample is employed. By using this layer architecture, the extended field of LRSPs probes the binding of biomolecules in the binding matrix at up to micrometer distances from the gold surface. With respect to regular surface plasmon-enhanced fluorescence spectroscopy (SPFS) and surface plasmon-coupled emission (SPCE), a narrower angular distribution of the fluorescence light intensity, a larger peak intensity and the excitation and emission at lower angles were observed.

© 2011 OSA

OCIS Codes
(160.5470) Materials : Polymers
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Sensors

History
Original Manuscript: March 18, 2011
Revised Manuscript: May 7, 2011
Manuscript Accepted: May 13, 2011
Published: May 23, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Koji Toma, Jakub Dostalek, and Wolfgang Knoll, "Long range surface plasmon-coupled fluorescence emission for biosensor applications," Opt. Express 19, 11090-11099 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-12-11090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Anal. Bioanal. Chem. 391(5), 1521–1544 (2008). [CrossRef] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  3. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006). [CrossRef] [PubMed]
  4. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008). [CrossRef] [PubMed]
  5. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000). [CrossRef]
  6. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003). [CrossRef] [PubMed]
  7. J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010). [CrossRef]
  8. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996). [CrossRef]
  9. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  10. G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006). [CrossRef]
  11. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009). [CrossRef] [PubMed]
  12. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  13. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89(10), 101106 (2006). [CrossRef]
  14. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007). [CrossRef]
  15. Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009). [CrossRef] [PubMed]
  16. Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009). [CrossRef]
  17. C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010). [CrossRef]
  18. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010). [CrossRef] [PubMed]
  19. A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009). [CrossRef] [PubMed]
  20. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007). [CrossRef] [PubMed]
  21. W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am. 58(3), 380–388 (1968). [CrossRef]
  22. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  23. L. Polerecký, J. Hamrle, and B. D. MacCraith, “Theory of the radiation of dipoles placed within a multilayer system,” Appl. Opt. 39(22), 3968–3977 (2000). [CrossRef]
  24. P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited