OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Observation of spontaneous polarization misalignments in periodically poled crystals using second-harmonic generation microscopy

Yu-Yi Tzeng, Zong-Yan Zhuo, Ming-Yin Lee, Chien-Sheng Liao, Pei-Chun Wu, Chin-Jie Huang, Ming-Che Chan, Tzu-Ming Liu, Yen-Yin Lin, and Shi-Wei Chu  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11106-11113 (2011)
http://dx.doi.org/10.1364/OE.19.011106


View Full Text Article

Acrobat PDF (1072 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodically poled crystal (PPC) is a key component for nonlinear optical applications. Its poling quality relies largely on successful domain inversion and the alignment of spontaneous polarization (SP) vectors in each domain. Here we report the unexpected observation of bulk second harmonic generation (SHG) in PPC when excitation propagating along its optical axis. Based on its tensorial nature, SHG is highly sensitive to the orientation of SP, and therefore the misalignment of SP in each domain of PPC can be revealed noninvasively by SHG microscopy. This nonlinear imaging modality provides optical sectioning capability with 3D sub-micrometer resolution, so it will be useful for in situ investigation of poling quality in PPC.

© 2011 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 30, 2011
Revised Manuscript: May 10, 2011
Manuscript Accepted: May 10, 2011
Published: May 23, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Yu-Yi Tzeng, Zong-Yan Zhuo, Ming-Yin Lee, Chien-Sheng Liao, Pei-Chun Wu, Chin-Jie Huang, Ming-Che Chan, Tzu-Ming Liu, Yen-Yin Lin, and Shi-Wei Chu, "Observation of spontaneous polarization misalignments in periodically poled crystals using second-harmonic generation microscopy," Opt. Express 19, 11106-11113 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-12-11106


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993). [CrossRef]
  3. J. Wang, J. Q. Sun, C. Lou, and Q. Z. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13(19), 7405–7414 (2005). [CrossRef] [PubMed]
  4. Y. J. Ding, Y. Jiang, G. Xu, and I. B. Zotova, “Review of recent efforts on efficient generation of monochromatic THz pulses based on difference-frequency generation,” Laser Phys. 20(5), 917–930 (2010). [CrossRef]
  5. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000). [CrossRef]
  6. A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006). [CrossRef]
  7. Y. W. Tzeng, Y. Y. Lin, C. H. Huang, J. M. Liu, H. C. Chui, H. L. Liu, J. M. Stone, J. C. Knight, and S. W. Chu, “Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser,” Opt. Express 17(9), 7304–7309 (2009). [CrossRef] [PubMed]
  8. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009). [CrossRef]
  9. D. Janner, D. Tulli, M. Garcia-Granda, M. Belmonte, and V. Pruneri, “Micro-structured integrated electro-optic LiNbO3 modulators,” Laser Photon. Rev. 3(3), 301–313 (2009). [CrossRef]
  10. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch,” Opt. Lett. 32(5), 545–547 (2007). [CrossRef] [PubMed]
  11. I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998). [CrossRef]
  12. M. J. Missey, S. Russell, V. Dominic, R. G. Batchko, and K. L. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate,” Opt. Express 6(10), 186–195 (2000). [CrossRef] [PubMed]
  13. V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999). [CrossRef]
  14. F. Saurenbach and B. D. Terris, “Imaging of ferroelectric domain-walls by force microscopy,” Appl. Phys. Lett. 56(17), 1703–1705 (1990). [CrossRef]
  15. R. Lüthi, H. Haefke, K. P. Meyer, E. Meyer, L. Howald, and H. J. Guntherodt, “Surface and domain-structures of ferroelectric-crystals studied with scanning force microscopy,” J. Appl. Phys. 74(12), 7461–7471 (1993). [CrossRef]
  16. G. Rosenman, A. Skliar, I. Lareah, N. Angert, M. Tseitlin, and M. Roth, “Observation of ferroelectric domain structures by secondary-electron microscopy in as-grown KTiOPO4 crystals,” Phys. Rev. B Condens. Matter 54(9), 6222–6226 (1996). [CrossRef] [PubMed]
  17. Z. W. Hu, P. A. Thomas, and J. Webjorn, “High-resolution x-ray characterization of periodically domain-inverted nonlinear-optical crystals,” J. Phys. D Appl. Phys. 28(4A), A189–A194 (1995). [CrossRef]
  18. F. Kahmann, R. Matull, R. A. Rupp, and J. Seglins, “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13(5), 405–410 (1990). [CrossRef]
  19. V. Grubsky, S. Maccormack, and J. Feinberg, “All-optical three-dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21(1), 6–8 (1996). [CrossRef] [PubMed]
  20. V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B-Lasers Opt. 78(3-4), 363–366 (2004). [CrossRef]
  21. J. Harris, G. Norris, and G. McConnell, “Characterisation of periodically poled materials using nonlinear microscopy,” Opt. Express 16(8), 5667–5672 (2008). [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998). [CrossRef]
  23. M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B-Lasers Opt. 67(5), 593–599 (1998). [CrossRef]
  24. Y. Sheng, A. Best, H. J. Butt, W. Krolikowski, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation,” Opt. Express 18(16), 16539–16545 (2010). [CrossRef] [PubMed]
  25. Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91(18), 182904 (2007). [CrossRef]
  26. J. Kaneshiro, Y. Uesu, and T. Fukui, “Visibility of inverted domain structures using the second harmonic generation microscope: comparison of interference and non-interference cases,” J. Opt. Soc. Am. B 27(5), 888–894 (2010). [CrossRef]
  27. S.-C. Pei, T.-S. Ho, C.-C. Tsai, T.-H. Chen, Y. Ho, P.-L. Huang, A. H. Kung, and S.-L. Huang, “Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics,” Opt. Express 19(8), 7153–7160 (2011). [CrossRef] [PubMed]
  28. Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010). [CrossRef] [PubMed]
  29. J.-Y. Yu, C.-S. Liao, Z.-Y. Zhuo, C.-H. Huang, H.-C. Chui, and S.-W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009). [CrossRef] [PubMed]
  30. Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-Polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited