OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach

Michael Kahnert and Tom Rother  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11138-11151 (2011)
http://dx.doi.org/10.1364/OE.19.011138


View Full Text Article

Enhanced HTML    Acrobat PDF (832 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A T-matrix method for scattering by particles with small-scale surface roughness is presented. The method combines group theory with a perturbation expansion approach. Group theory is found to reduce CPU-time by 4–6 orders of magnitude. The perturbation expansion extends the range of size parameters by a factor of 5 compared to non-perturbative methods. An application to optically hard particles shows that small-scale surface roughness changes scattering in side- and backscattering directions, and it impacts the single-scattering albedo. This can have important implications for interpreting remote sensing observations, and for the climate impact of mineral aerosols.

© 2011 OSA

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles
(290.5880) Scattering : Scattering, rough surfaces
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: April 27, 2011
Revised Manuscript: May 17, 2011
Manuscript Accepted: May 17, 2011
Published: May 23, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Michael Kahnert and Tom Rother, "Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach," Opt. Express 19, 11138-11151 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-12-11138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kahnert, T. Nousiainen, and P. Mauno, “On the impact of small-scale surface roughness and non-sphericity on the optical properties of hematite aerosols,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  2. T. Rother, K. Schmidt, J. Wauer, V. Shcherbakov, and J.-F. Gaeyt, “Light scattering on Chebyshev particles of higher order,” Appl. Opt. 45, 6030–6037 (2006). [CrossRef] [PubMed]
  3. J.-C. Auger, G. Fernandes, K. Aptowicz, Y.-L. Pan, and R. Chang, “Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles,” Appl. Phys. B 99, 229–234 (2010). [CrossRef]
  4. M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer 112, 671–692 (2011). [CrossRef]
  5. K. Muinonen, “Light scattering by stochastically shaped particles,” in Light Scattering by Nonspherical Particles , M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, 2000), pp. 323–354. [CrossRef]
  6. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Application of the extended boundary condition method to homogeneous particles with point group symmetries,” Appl. Opt. 40, 3110–3123 (2001). [CrossRef]
  7. M. Kahnert, “Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem,” J. Opt. Soc. Am. A 22, 1187–1199 (2005). [CrossRef]
  8. M. Kahnert, “Boundary symmetries in linear differential and integral equation problems applied to the self-consistent Green’s function formalism of acoustic and electromagnetic scattering,” Opt. Commun. 265, 383–393 (2006). [CrossRef]
  9. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965). [CrossRef]
  10. F. M. Schulz, K. Stamnes, and J. J. Stamnes, “Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T-matrix computed in spheroidal coordinates,” Appl. Opt. 37, 7875–7896 (1998). [CrossRef]
  11. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003). [CrossRef]
  12. T. Rother and J. Wauer, “Case study about the accuracy behavior of three different T-matrix methods,” Appl. Opt. 49, 5746–5756 (2010). [CrossRef] [PubMed]
  13. W. Greiner and J. Reinhardt, Quantum Electrodynamics (Springer, 2008).
  14. T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles (Springer, 2009). [CrossRef]
  15. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Application of the extended boundary condition method to particles with sharp edges: a comparison of two different surface integration approaches,” Appl. Opt. 40, 3101–3109 (2001). [CrossRef]
  16. O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Y. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535 (2006). [CrossRef]
  17. D. Petrov, Y. Shkuvatov, and G. Videen, “Analytical light-scattering solution for Chebyshev particles,” J. Opt. Soc. Am. A 24, 1103–1119 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited