OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm

Kavita Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11631-11637 (2011)
http://dx.doi.org/10.1364/OE.19.011631


View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an efficient fiber-laser-based source of high-power, continuous-wave (cw), linearly-polarized radiation at 970 nm in a simple, compact, and practical design. Using direct single-pass second-harmonic-generation (SP-SHG) of a cw thulium fiber laser at 1940 nm in a 40-mm-long periodically-poled LiNbO3 (PPLN) crystal, we have generated 13.1 W of output power at 970 nm for a fundamental power of 40 W at a conversion efficiency as high as 32.7%. The generated second-harmonic output exhibits a passive power stability better than 1.4% (1σ value) over 1 hour, has a linewidth better than 0.3 nm, and a TEM00 spatial beam profile with M2 <1.6. Relevant theoretical calculations for the characterization of SP-SHG in the crystal have also been performed.

© 2011 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 23, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 25, 2011
Published: June 1, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Kavita Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm," Opt. Express 19, 11631-11637 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-12-11631


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Sandrock, D. Fischer, P. Glas, M. Leitner, M. Wrage, and A. Diening, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 µm,” Opt. Lett. 24(18), 1284–1286 (1999). [CrossRef]
  2. E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006). [CrossRef]
  3. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt. 38(24), 5149–5153 (1999). [CrossRef]
  4. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010). [CrossRef]
  5. X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000). [CrossRef]
  6. L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998). [CrossRef]
  7. M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005). [CrossRef]
  8. C. Ruppert and M. Betz, “Generation of 30 femtosecond, 900-970 nm pulses from a Ti:sapphire laser far off the gain peak,” Opt. Express 16(8), 5572–5576 (2008). [CrossRef] [PubMed]
  9. F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009). [CrossRef]
  10. F. Roser, C. Jauregui, J. Limpert, and A. Tunnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008). [CrossRef] [PubMed]
  11. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009). [CrossRef] [PubMed]
  12. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010). [CrossRef] [PubMed]
  13. G. Frith, T. McComb, B. Samson, W. Torruellas, M. Dennis, A. Carter, V. Khitrov, and K. Tankala, “Frequency doubling of Tm-doped fiber lasers for efficient 950 nm generation,” in Advanced Solid-State Photonics, (Denver, Colorado, 2009), paper WB5 (Top five downloads, ASSP 2009).
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  15. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968). [CrossRef]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997). [CrossRef]
  17. R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, Inc. 1996), Chap.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited