OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Optical response of supported gold nanodisks

A. Mendoza-Galván, K. Järrendahl, A. Dmitriev, T. Pakizeh, M. Käll, and H. Arwin  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12093-12107 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that the ellipsometric spectra of short range ordered planar arrays of gold nanodisks supported on glass substrates can be described by modeling the nanostructured arrays as uniaxial homogeneous layers with dielectric functions of the Lorentz type. However, appreciable deviations from experimental data are observed in calculated spectra of irradiance measurements. A qualitative and quantitative description of all measured spectra is obtained with a uniaxial effective medium dielectric function in which the nanodisks are modeled as oblate spheroids. Dynamic depolarization factors in the long-wavelength approximation and interaction with the substrate are considered. Similar results are obtained calculating the optical spectra using the island-film theory. Nevertheless, a small in-plane anisotropy and quadrupolar coupling effects reveal a very complex optical response of the nanostructured arrays.

© 2011 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.1245) Materials : Artificially engineered materials
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:

Original Manuscript: April 21, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: May 28, 2011
Published: June 7, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

A. Mendoza-Galván, K. Järrendahl, A. Dmitriev, T. Pakizeh, M. Käll, and H. Arwin, "Optical response of supported gold nanodisks," Opt. Express 19, 12093-12107 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  2. N. V. Voshchinnikov and V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993). [CrossRef]
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  4. N. G. Khlebtsov and L. A. Dykman, “Optical properties and biomedical applications of plasmonic nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 1–35 (2010). [CrossRef]
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  6. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(18), 3528–3532 (2008). [CrossRef]
  7. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009). [CrossRef] [PubMed]
  8. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(23), 4297–4302 (2007). [CrossRef]
  9. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express 14(18), 8240–8246 (2006). [CrossRef] [PubMed]
  10. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small 3(2), 294–299 (2007). [CrossRef] [PubMed]
  11. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25(4), 659–667 (2008). [CrossRef]
  12. T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009). [CrossRef] [PubMed]
  13. B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010). [CrossRef] [PubMed]
  14. P. Hanarp, M. Käll, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003). [CrossRef]
  15. C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006). [CrossRef] [PubMed]
  16. C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007). [CrossRef] [PubMed]
  17. Y. B. Zheng, B. Kiraly, S. Cheunkar, T. J. Huang, and P. S. Weiss, “Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling,” Nano Lett. 11(5), 2061–2065 (2011). [CrossRef] [PubMed]
  18. Y. B. Zheng, B. K. Juluri, L. Lin Jensen, D. Ahmed, M. Lu, L. Jensen, and T. J. Huang, “Dynamical tuning of plasmon-exciton coupling in arrays of nanodisk-J-aggregate complexes,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3603–3607 (2010). [CrossRef]
  19. T. Yang and K. B. Crozier, “Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model,” Opt. Express 16(17), 13070–13079 (2008). [CrossRef] [PubMed]
  20. T. Yang and K. B. Crozier, “Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface,” Opt. Express 16(12), 8570–8580 (2008). [CrossRef] [PubMed]
  21. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007). [CrossRef] [PubMed]
  22. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010). [CrossRef]
  23. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010). [CrossRef] [PubMed]
  24. S. Berthier, “Anisotropic effective medium theories,” J. Phys. I 4(2), 303–318 (1994). [CrossRef]
  25. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21(1), 173–187 (1974). [CrossRef]
  26. V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A, Pure Appl. Opt. 6(2), 155–160 (2004). [CrossRef]
  27. D. Bedeaux and J. Vlieger, Optical Properties of Surfaces (Imperial College Press, 2001).
  28. R. Lazzari and I. Simonsen, “GRANFILM: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films 419(1-2), 124–136 (2002). [CrossRef]
  29. H. Wormeester, E. S. Kooij, A. Mewe, S. Rekveld, and B. Poelsema, “Ellipsometric characterisation of heterogeneous 2D layers,” Thin Solid Films 455–456, 323–334 (2004). [CrossRef]
  30. H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, and M. P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006). [CrossRef] [PubMed]
  31. J. M. Flores-Camacho, L. D. Sun, N. Saucedo-Zeni, G. Weidlinger, M. Hohage, and P. Zeppenfeld, “Optical anisotropies of metal clusters supported on a birefringent substrate,” Phys. Rev. B 78(7), 075416 (2008). [CrossRef]
  32. M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009). [CrossRef] [PubMed]
  33. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000). [CrossRef]
  34. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  35. G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles,” Appl. Phys. Lett. 88(4), 043114 (2006). [CrossRef]
  36. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994). [CrossRef]
  37. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983). [CrossRef] [PubMed]
  38. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26(3), 517–527 (2009). [CrossRef]
  39. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008). [CrossRef] [PubMed]
  40. R. Boyack and E. C. Le Ru, “Investigation of particle shape and size effects in SERS using T-matrix calculations,” Phys. Chem. Chem. Phys. 11(34), 7398–7405 (2009). [CrossRef] [PubMed]
  41. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003). [CrossRef]
  42. C. E. Román-Velázquez, C. Noguez, and R. G. Barrera, “Substrate effects on the optical properties of spheroidal nanoparticles,” Phys. Rev. B 61(15), 10427–10436 (2000). [CrossRef]
  43. R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: the case of Ag/α-Al2O3 (0001),” Phys. Rev. B 65(23), 235424 (2002). [CrossRef]
  44. Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express 16(17), 13287–13295 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited