OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Signal detectability in diffusive media using phased arrays in conjunction with detector arrays

Dongyel Kang and Matthew A. Kupinski  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12261-12274 (2011)
http://dx.doi.org/10.1364/OE.19.012261


View Full Text Article

Enhanced HTML    Acrobat PDF (1892 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

© 2011 OSA

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(030.6600) Coherence and statistical optics : Statistical optics
(290.7050) Scattering : Turbid media

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: March 10, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: June 1, 2011
Published: June 9, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Dongyel Kang and Matthew A. Kupinski, "Signal detectability in diffusive media using phased arrays in conjunction with detector arrays," Opt. Express 19, 12261-12274 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-13-12261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003). [CrossRef]
  2. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  3. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998). [CrossRef]
  4. H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16(22), 18082–18101 (2008). [CrossRef] [PubMed]
  5. Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001). [CrossRef] [PubMed]
  6. V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express 11(21), 2717–2729 (2003). [CrossRef] [PubMed]
  7. U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008). [CrossRef] [PubMed]
  8. U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007). [CrossRef]
  9. K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007). [CrossRef]
  10. A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8(1), 111–120 (2003). [CrossRef] [PubMed]
  11. J. M. Schmitt, A. Knüttel, and J. R. Knutson, “Interference of diffusive light waves,” J. Opt. Soc. Am. A 9(10), 1832–1843 (1992). [CrossRef] [PubMed]
  12. D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996). [CrossRef]
  13. S. P. Morgan and K. Y. Yong, “Amplitude-phase crosstalk cancelation in frequency domain instrumentation,” Proc. SPIE 4250, 269–275 (2001). [CrossRef]
  14. X. Intes, V. Ntziachristos, and B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10(1), 2–14 (2002). [PubMed]
  15. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28(21), 2070–2072 (2003). [CrossRef] [PubMed]
  16. B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52(5), 1409–1429 (2007). [CrossRef] [PubMed]
  17. S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009). [CrossRef]
  18. Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001). [CrossRef] [PubMed]
  19. S. P. Morgan and K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7(13), 540–546 (2000). [CrossRef] [PubMed]
  20. S. P. Morgan, “Detection performance of a diffusive wave phased array,” Appl. Opt. 43(10), 2071–2078 (2004). [CrossRef] [PubMed]
  21. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12(5), 834–852 (1995). [CrossRef]
  22. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  23. J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997). [CrossRef] [PubMed]
  24. Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005). [CrossRef]
  25. R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Comparison of noncontact and fiber-based fluorescence-mediated tomography,” Opt. Lett. 31(6), 769–771 (2006). [CrossRef] [PubMed]
  26. G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33(15), 1744–1746 (2008). [CrossRef] [PubMed]
  27. H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt. Soc. Am. A 7(7), 1266–1278 (1990). [CrossRef] [PubMed]
  28. A. R. Pineda, M. Schweiger, S. R. Arridge, and H. H. Barrett, “Information content of data types in time-domain optical tomography,” J. Opt. Soc. Am. A 23(12), 2989–2996 (2006). [CrossRef]
  29. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002). [PubMed]
  30. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001). [CrossRef] [PubMed]
  31. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model,” Appl. Opt. 41(19), 4024–4035 (2002). [CrossRef] [PubMed]
  32. D. Kang and M.A. Kupinski, “Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging,” J. Biomed. Opt. (to be submitted). [PubMed]
  33. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  34. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  35. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2(10), 411–423 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited