OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance

Ramūnas Augulis and Donatas Zigmantas  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13126-13133 (2011)
http://dx.doi.org/10.1364/OE.19.013126


View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In many potential applications of two-dimensional (2D) electronic spectroscopy the excitation energies per pulse are strictly limited, while the samples are strongly scattering. We demonstrate a technique, based on double-modulation of incident laser beams with mechanical choppers, which can be implemented in almost any non-collinear four wave mixing scheme including 2D spectroscopy setup. The technique virtually eliminates artifacts or “ghost” signals in 2D spectra, which arise due to scattering and accumulation of long-lived species. To illustrate the advantages of the technique, we show a comparison of porphyrin J-aggregate 2D spectra obtained with different methods following by discussion.

© 2011 OSA

OCIS Codes
(120.2920) Instrumentation, measurement, and metrology : Homodyning
(300.2570) Spectroscopy : Four-wave mixing
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:
Spectroscopy

History
Original Manuscript: April 8, 2011
Revised Manuscript: May 23, 2011
Manuscript Accepted: May 23, 2011
Published: June 22, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Ramūnas Augulis and Donatas Zigmantas, "Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance," Opt. Express 19, 13126-13133 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-14-13126


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998). [CrossRef]
  2. N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009). [CrossRef] [PubMed]
  3. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  4. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15(25), 16681–16689 (2007). [CrossRef] [PubMed]
  5. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103(49), 10489–10505 (1999). [CrossRef]
  6. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004). [CrossRef]
  7. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004). [CrossRef] [PubMed]
  8. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111(23), 4873–4883 (2007). [CrossRef] [PubMed]
  9. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004). [CrossRef] [PubMed]
  10. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]
  11. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009). [CrossRef] [PubMed]
  12. R. Rotomskis, R. Augulis, V. Snitka, R. Valiokas, and B. Liedberg, “Hierarchical structure of TPPS4 J-aggregates on substrate revealed by atomic force microscopy,” J. Phys. Chem. B 108(9), 2833–2838 (2004). [CrossRef]
  13. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131(14), 144510 (2009). [CrossRef] [PubMed]
  14. J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42(9), 1375–1384 (2009). [CrossRef] [PubMed]
  15. A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133(9), 094505 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited