OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber

Hongbao Xin and Baojun Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13285-13290 (2011)
http://dx.doi.org/10.1364/OE.19.013285


View Full Text Article

Enhanced HTML    Acrobat PDF (1127 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Targeted drug delivery and controllable release are particularly beneficial in medical therapy. This work provides a demonstration of nanoparticles targeted delivery and controllable release using a defect-decorated optical nanofiber (NF). By using the NF, polystyrene particles (PSs) (713-nm diameter) suspended in water were successfully trapped, then delivered along the NF at an average velocity of 4.8 µm/s with the assistance of a laser beam of 980-nm wavelength at an optical power of 39 mW, and finally, assembled at the defect. Subsequently, by turning off the optical power, 90% of the assembled PSs can be released in 30 s. This method would be useful in targeted drug delivery and controllable release, and provide potential applications in targeted therapy.

© 2011 OSA

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 8, 2011
Revised Manuscript: May 29, 2011
Manuscript Accepted: June 12, 2011
Published: June 24, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Hongbao Xin and Baojun Li, "Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber," Opt. Express 19, 13285-13290 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-14-13285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  2. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006). [CrossRef]
  3. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  4. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003). [CrossRef] [PubMed]
  5. D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004). [CrossRef] [PubMed]
  6. C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302(5653), 2130–2134 (2003). [CrossRef] [PubMed]
  7. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  8. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  9. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992). [CrossRef] [PubMed]
  10. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010). [CrossRef] [PubMed]
  11. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005). [CrossRef] [PubMed]
  12. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  13. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002). [CrossRef]
  14. H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005). [CrossRef]
  15. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007). [CrossRef] [PubMed]
  16. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008). [CrossRef] [PubMed]
  17. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006). [CrossRef] [PubMed]
  18. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007). [CrossRef] [PubMed]
  19. H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011). [CrossRef] [PubMed]
  20. H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011), doi:. [CrossRef] [PubMed]
  21. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  22. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3834 KB)      QuickTime
» Media 2: MOV (3866 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited