OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Total internal reflection STED microscopy

Travis J. Gould, Jordan R. Myers, and Joerg Bewersdorf  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13351-13357 (2011)
http://dx.doi.org/10.1364/OE.19.013351


View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stimulated emission depletion (STED) microscopy achieves diffraction-unlimited resolution in far-field fluorescence microscopy well below 100 nm. As common for (single-lens) far-field microscopy techniques, the lateral resolution is better than the axial sectioning capabilities. Here we present the first implementation of total internal reflection (TIR) illumination into STED microscopy which limits fluorophore excitation to ~70 nm in the vicinity of the cover slip while simultaneously providing ~50 nm lateral resolution. We demonstrate the performance of this new microscope technique with fluorescent bead test samples as well as immuno-stained microtubules. Total internal reflection STED microscopy provides superior axial sectioning capabilities with the potential to reduce photo-bleaching and photo-damage in live cell imaging.

© 2011 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(260.6970) Physical optics : Total internal reflection
(350.5730) Other areas of optics : Resolution

ToC Category:
Microscopy

History
Original Manuscript: May 16, 2011
Revised Manuscript: June 15, 2011
Manuscript Accepted: June 15, 2011
Published: June 27, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Travis J. Gould, Jordan R. Myers, and Joerg Bewersdorf, "Total internal reflection STED microscopy," Opt. Express 19, 13351-13357 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-14-13351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  2. D. Toomre and J. Bewersdorf, “A new wave of cellular imaging,” Annu. Rev. Cell Dev. Biol. 26(1), 285–314 (2010). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  7. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  8. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [CrossRef] [PubMed]
  9. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  10. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [CrossRef] [PubMed]
  11. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  12. L. Meyer, D. Wildanger, R. Medda, A. Punge, S. O. Rizzoli, G. Donnert, and S. W. Hell, “Dual-color STED microscopy at 30-nm focal-plane resolution,” Small 4(8), 1095–1100 (2008). [CrossRef] [PubMed]
  13. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3(9), 721–723 (2006). [CrossRef] [PubMed]
  14. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express 19(4), 3130–3143 (2011). [CrossRef] [PubMed]
  15. M. Dyba, S. Jakobs, and S. W. Hell, “Immunofluorescence stimulated emission depletion microscopy,” Nat. Biotechnol. 21(11), 1303–1304 (2003). [CrossRef] [PubMed]
  16. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008). [CrossRef] [PubMed]
  17. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981). [CrossRef] [PubMed]
  18. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43(5), 1063–1071 (2004). [CrossRef] [PubMed]
  19. G. Terakado, K. Watanabe, and H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt. 48(6), 1114–1118 (2009). [CrossRef]
  20. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. Lanigan, G. Kennedy, M. A. Neil, and P. M. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008). [CrossRef] [PubMed]
  21. A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11(1), 014006 (2006). [CrossRef] [PubMed]
  22. C. A. Wurm, D. Neumann, R. Schmidt, A. Egner, and S. Jakobs, “Sample preparation for STED microscopy,” Methods Mol. Biol. 591, 185–199 (2010). [CrossRef] [PubMed]
  23. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008). [CrossRef] [PubMed]
  24. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited