OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers

Yinlan Ruan, Shahraam Afshar, and Tanya M. Monro  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13464-13479 (2011)
http://dx.doi.org/10.1364/OE.19.013464


View Full Text Article

Enhanced HTML    Acrobat PDF (1595 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report theoretical calculations of the mode fields of high index lead silicate and silicon nano fibers, and show that their strong longitudinal component enables efficient excitation of surface plasmons within a silver nanorod placed at the fiber tip. An excitation efficiency 1600 times higher than that of the standard single mode fibers has been achieved using a 350nm diameter silicon fiber at 1.1μm wavelength, while a factor of 640 times higher efficiency is achieved for a 400nm diameter lead silicate F2 glass fiber. The strong localized field emerging from the end of the rod serves as a nano-scale source with adjustable beam width, and such sources offer a new approach to high-resolution microscopy, particle manipulation and sensing.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 6, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 13, 2011
Published: June 28, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Yinlan Ruan, Shahraam Afshar, and Tanya M. Monro, "Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers," Opt. Express 19, 13464-13479 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-14-13464


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl. 47(43), 8178–8191 (2008). [CrossRef] [PubMed]
  2. H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009). [CrossRef] [PubMed]
  3. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006). [CrossRef] [PubMed]
  4. T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005). [CrossRef] [PubMed]
  5. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997). [CrossRef]
  6. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004). [CrossRef]
  7. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007). [CrossRef] [PubMed]
  8. http://www.ntmdt-tips.com/catalog/snom/red/products/MF003.html .
  9. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001). [CrossRef] [PubMed]
  10. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007). [CrossRef]
  11. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2298 . [CrossRef] [PubMed]
  12. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15086 . [CrossRef] [PubMed]
  13. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2646 . [CrossRef] [PubMed]
  14. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18533 . [CrossRef]
  15. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16826 . [CrossRef] [PubMed]
  16. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18, 26018–26026 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26018 .
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman &Hall, London, UK, 1983).
  18. N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New Yor, 1985).
  20. T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002). [CrossRef]
  21. http://www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf .
  22. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  23. H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010). [CrossRef] [PubMed]
  24. http://www.illuminex.biz .
  25. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009). [CrossRef] [PubMed]
  26. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  27. R. P. Van Duyne, in Chemical and biochemical applications of lasers (ed. Moore, C. B.) Vol. 4, 101–184(Academic, New York, 1979).
  28. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited