OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging

Clifford B. Talbot, Rakesh Patalay, Ian Munro, Sean Warren, Fulvio Ratto, Paolo Matteini, Roberto Pini, H. Georg Breunig, Karsten König, Antony C. Chu, Gordon W. Stamp, Mark A. A. Neil, Paul M. W. French, and Chris Dunsby  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 13848-13861 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1394 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When performing multiphoton fluorescence lifetime imaging in multiple spectral emission channels, an instrument response function must be acquired in each channel if accurate measurements of complex fluorescence decays are to be performed. Although this can be achieved using the reference reconvolution technique, it is difficult to identify suitable fluorophores with a mono-exponential fluorescence decay across a broad emission spectrum. We present a solution to this problem by measuring the IRF using the ultrafast luminescence from gold nanorods. We show that ultrafast gold nanorod luminescence allows the IRF to be directly obtained in multiple spectral channels simultaneously across a wide spectral range. We validate this approach by presenting an analysis of multispectral autofluorescence FLIM data obtained from human skin ex vivo.

© 2011 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 18, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 14, 2011
Published: July 6, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Clifford B. Talbot, Rakesh Patalay, Ian Munro, Sean Warren, Fulvio Ratto, Paolo Matteini, Roberto Pini, H. Georg Breunig, Karsten König, Antony C. Chu, Gordon W. Stamp, Mark A. A. Neil, Paul M. W. French, and Chris Dunsby, "Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging," Opt. Express 19, 13848-13861 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003). [CrossRef] [PubMed]
  3. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997). [CrossRef] [PubMed]
  4. W. Becker, A. Bergmann, E. Haustein, Z. Petrasek, P. Schwille, C. Biskup, T. Anhut, I. Riemann, and K. Koenig, “Fluorescence lifetime images and correlation spectra obtained by multi-dimensional TCSPC,” in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy, and P. T. C. So, eds. (SPIE, Bellingham, 2005), pp. 144–151.
  5. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995). [CrossRef] [PubMed]
  6. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007). [CrossRef] [PubMed]
  7. K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000). [CrossRef]
  8. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005). [CrossRef] [PubMed]
  9. Y. Wu, W. Zheng, and J. Y. Qu, “Sensing cell metabolism by time-resolved autofluorescence,” Opt. Lett. 31(21), 3122–3124 (2006). [CrossRef] [PubMed]
  10. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14(10), 4395–4402 (2006). [CrossRef] [PubMed]
  11. D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004). [CrossRef] [PubMed]
  12. A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002). [CrossRef]
  13. W. Becker, “Recording the instrument response function of a multiphoton FLIM sytem,” Becker & Hickl GmbH Application Note irf-mp-04.doc (2008), http://www.becker-hickl.de/pdf/irf-mp04.pdf .
  14. R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008). [CrossRef]
  15. E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009). [CrossRef] [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  17. D. Bebelaar, “Time response of various types of photomultipliers and its wavelength dependence in time-correlated single-photon counting with an ultimate resolution of 47 ps FWHM,” Rev. Sci. Instrum. 57(6), 1116–1125 (1986). [CrossRef]
  18. R. Krahl, A. Bülter, and F. Koberling, “Performance of the Micro Photon Devices PDM 50CT SPAD detector with PicoQuant TCSPC systems” Technical Note (PicoQuant GmbH, 2005).
  19. R. Luchowski, M. Szabelski, P. Sarkar, E. Apicella, K. Midde, S. Raut, J. Borejdo, Z. Gryczynski, and I. Gryczynski, “Fluorescence instrument response standards in two-photon time-resolved spectroscopy,” Appl. Spectrosc. 64(8), 918–922 (2010). [CrossRef] [PubMed]
  20. K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999). [PubMed]
  21. M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995). [PubMed]
  22. M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985). [CrossRef]
  23. N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007). [CrossRef] [PubMed]
  24. A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22(5), 185–187 (1969). [CrossRef]
  25. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000). [CrossRef]
  26. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004). [CrossRef]
  27. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  28. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003). [CrossRef]
  29. S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007). [CrossRef]
  30. O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001). [CrossRef]
  31. O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003). [CrossRef]
  32. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005). [CrossRef] [PubMed]
  33. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  34. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006). [CrossRef] [PubMed]
  35. J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008). [CrossRef]
  36. H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  37. Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010). [CrossRef] [PubMed]
  38. P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010). [CrossRef] [PubMed]
  39. J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005). [CrossRef]
  40. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  41. F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010). [CrossRef]
  42. L. F. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17(14), 3668–3672 (2005). [CrossRef]
  43. X. D. Xu and M. B. Cortie, “Shape change and color gamut in gold nanorods, dumbbells, and dog bones,” Adv. Funct. Mater. 16(16), 2170–2176 (2006). [CrossRef]
  44. C. B. Talbot, R. Patalay, I. H. Munro, H. G. Breunig, K. Konig, Y. Alexandrov, S. Warren, A. Chu, G. W. Stamp, M. A. A. Neil, P. M. W. French, and C. W. Dunsby, “A multispectral FLIM microscope for in-vivo imaging of skin cancer,” P. Ammasi, K. Karsten, and T. C. S. Peter, eds. (SPIE, 2011), p. 79032B.
  45. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009). [CrossRef]
  46. M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007). [CrossRef]
  47. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005). [CrossRef] [PubMed]
  48. L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010). [CrossRef] [PubMed]
  49. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000). [CrossRef]
  50. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000). [CrossRef]
  51. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited