OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Microlensed dual-fiber probe for depth-resolved fluorescence measurements

Hae Young Choi, Seon Young Ryu, Jae Young Kim, Geon Hee Kim, Seong Jun Park, Byeong Ha Lee, and Ki Soo Chang  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14172-14181 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1219 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 25, 2011
Revised Manuscript: June 20, 2011
Manuscript Accepted: June 23, 2011
Published: July 11, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Hae Young Choi, Seon Young Ryu, Jae Young Kim, Geon Hee Kim, Seong Jun Park, Byeong Ha Lee, and Ki Soo Chang, "Microlensed dual-fiber probe for depth-resolved fluorescence measurements," Opt. Express 19, 14172-14181 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003). [CrossRef] [PubMed]
  2. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1/2), 89–117 (2000). [CrossRef] [PubMed]
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002). [CrossRef] [PubMed]
  4. L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006). [CrossRef]
  5. A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004). [CrossRef] [PubMed]
  6. S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005). [CrossRef] [PubMed]
  7. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt. 47(6), 825–834 (2008). [CrossRef] [PubMed]
  8. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003). [CrossRef] [PubMed]
  9. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002). [CrossRef] [PubMed]
  10. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28(2), 120–122 (2003). [CrossRef] [PubMed]
  11. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004). [CrossRef] [PubMed]
  12. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005). [CrossRef] [PubMed]
  13. L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009). [CrossRef] [PubMed]
  14. G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282(14), 2676–2684 (2009). [CrossRef]
  15. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50(7), 849–860 (1996). [CrossRef]
  16. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001). [CrossRef]
  17. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K. T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15(26), 17681–17689 (2007). [CrossRef] [PubMed]
  18. S. Y. Ryu, H. Y. Choi, M. J. Ju, J. N. Na, W. J. Choi, and B. H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea 13(3), 310–315 (2009). [CrossRef]
  19. F. Jaillon, W. Zheng, and Z. W. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Phys. Med. Biol. 53(4), 937–951 (2008). [CrossRef] [PubMed]
  20. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005). [CrossRef] [PubMed]
  21. F. Jaillon, W. Zheng, and Z. Huang, “Half-ball lens couples a beveled fiber probe for depth-resolved spectroscopy: Monte Carlo simulations,” Appl. Opt. 47(17), 3152–3157 (2008). [CrossRef] [PubMed]
  22. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1(1), 17–30 (2010). [CrossRef] [PubMed]
  23. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008). [CrossRef] [PubMed]
  24. H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011). [CrossRef]
  25. C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000). [CrossRef]
  26. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47(10), 1510–1516 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited