OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

Justin Rajesh Rajian, Mario L. Fabiilli, J. Brian Fowlkes, Paul L. Carson, and Xueding Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14335-14347 (2011)
http://dx.doi.org/10.1364/OE.19.014335


View Full Text Article

Enhanced HTML    Acrobat PDF (1296 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption spectrum of indocyanine green (ICG), a nontoxic dye used for medical diagnostics, depends upon its concentration as well as the nature of its environment, i.e., the solvent medium into which it is dissolved. In blood, ICG binds with plasma proteins, thus causing changes in its photoacoustic spectrum. We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. We propose that these changes in the photoacoustic spectrum of the ICG emulsion in blood, coupled with photoacoustic tomography, could be used to spatially and quantitatively monitor ultrasound initiated drug delivery. In addition, we suggest that the photoacoustic spectral change induced by ultrasound exposure could also be used as contrast in photoacoustic imaging to obtain a background free image.

© 2011 OSA

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 25, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 27, 2011
Published: July 12, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Justin Rajesh Rajian, Mario L. Fabiilli, J. Brian Fowlkes, Paul L. Carson, and Xueding Wang, "Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion," Opt. Express 19, 14335-14347 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-15-14335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  3. A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111(6), 401–428 (1881). [CrossRef]
  4. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007). [CrossRef] [PubMed]
  5. X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007). [CrossRef] [PubMed]
  6. J. R. Rajian, P. L. Carson, and X. Wang, “Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent,” Opt. Express 17(6), 4879–4889 (2009). [CrossRef] [PubMed]
  7. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009). [CrossRef] [PubMed]
  8. D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010). [CrossRef]
  9. K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).
  10. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009). [CrossRef] [PubMed]
  11. X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Opt. Lett. 32(20), 3002–3004 (2007). [CrossRef] [PubMed]
  12. K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009). [CrossRef] [PubMed]
  13. L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992). [CrossRef] [PubMed]
  14. U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002). [CrossRef] [PubMed]
  15. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003). [CrossRef] [PubMed]
  16. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999). [CrossRef] [PubMed]
  17. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976). [PubMed]
  18. X. D. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004). [CrossRef] [PubMed]
  19. J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007). [CrossRef] [PubMed]
  20. J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009). [CrossRef] [PubMed]
  21. N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009). [CrossRef] [PubMed]
  22. N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010). [CrossRef] [PubMed]
  23. M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010). [CrossRef] [PubMed]
  24. M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010). [CrossRef] [PubMed]
  25. R. E. Apfel, “Activatable infusable dispersions containing drops of a superheated liquid for methods oftherapy and diagnosis,” Apfel Enterprises, Inc., ed. (1998).
  26. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000). [CrossRef] [PubMed]
  27. T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003). [CrossRef] [PubMed]
  28. K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005). [CrossRef]
  29. J. G. Riess, “Oxygen carriers (“blood substitutes”) - raison d’etre, chemistry, and some physiology,” Chem. Rev. 101(9), 2797–2920 (2001). [CrossRef] [PubMed]
  30. J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006). [CrossRef] [PubMed]
  31. N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010). [CrossRef] [PubMed]
  32. M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited