OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Revisit on dynamic radiation forces induced by pulsed Gaussian beams

Li-Gang Wang and Hai-Shui Chai  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14389-14402 (2011)
http://dx.doi.org/10.1364/OE.19.014389


View Full Text Article

Enhanced HTML    Acrobat PDF (2663 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Motivated by the recent optical trapping experiments using ultra-short pulsed lasers [Opt. Express 18, 7554 (2010); Appl. Opt. 48, G33 (2009)], in this paper we have re-investigated the trapping effects of the pulsed radiation force (PRF), which is induced by a pulsed Gaussian beam acting on a Rayleigh dielectric sphere. Based on our previous model [Opt. Express 15, 10615 (2007)], we have considered the effects arisen from both the transverse and axial PRFs, which lead to the different behaviors of both velocities and displacements of a Rayleigh particle within a pulse duration. Our analysis shows that, for the small-sized Rayleigh particles, when the pulse has the large pulse duration, it might provide the three-dimensional optical trapping; and when the pulse has the short pulse duration, it only provides the two-dimensional optical trapping with the axial movement along the pulse propagation. When the particle is in the vacuum or in the situation with the very weak Brownian motion, the particle can always be trapped stably due to the particle’s cumulative momentum transferred from the pulse, and only in this case the trapping effect is independent of pulse duration. Finally, we have predicted that for the large-sized Rayleigh particles, the pulse beam can only provide the two-dimensional optical trap (optical guiding). Our results provide the important information about the trapping mechanism of pulsed tweezers.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(320.5550) Ultrafast optics : Pulses

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: May 16, 2011
Revised Manuscript: July 2, 2011
Manuscript Accepted: July 5, 2011
Published: July 12, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Li-Gang Wang and Hai-Shui Chai, "Revisit on dynamic radiation forces induced by pulsed Gaussian beams," Opt. Express 19, 14389-14402 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-15-14389


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  4. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” in Methods in cell Biology, M. P. Sheetz, ed. (Academic Press, 1998), vol. 55, pp.1–27. [PubMed]
  5. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  6. A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67(2), 766–781 (1994). [CrossRef] [PubMed]
  7. J. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68(3), 988–996 (1995). [CrossRef] [PubMed]
  8. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998). [CrossRef] [PubMed]
  9. A. Ashkin, “Trapping of Atoms by Resonance Radiation Pressure,” Phys. Rev. Lett. 40(12), 729–732 (1978). [CrossRef]
  10. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986). [CrossRef] [PubMed]
  11. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999). [CrossRef] [PubMed]
  12. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89(12), 128301 (2002). [CrossRef] [PubMed]
  13. L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75, 161305 (2007). [CrossRef]
  14. L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008). [CrossRef] [PubMed]
  15. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010). [CrossRef] [PubMed]
  16. Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007). [CrossRef]
  17. C. L. Zhao, L. G. Wang, and X. H. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007). [CrossRef]
  18. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001). [CrossRef]
  19. H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12(11), 2560–2565 (2004). [CrossRef] [PubMed]
  20. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007). [CrossRef] [PubMed]
  21. B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004). [CrossRef] [PubMed]
  22. A. A. Ambardekar and Y. Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30(14), 1797–1799 (2005). [CrossRef] [PubMed]
  23. J. L. Deng, Q. Wei, Y. Z. Wang, and Y. Q. Li, “Numerical modeling of optical levitation and trapping of the “stuck” particles with a pulsed optical tweezers,” Opt. Express 13(10), 3673–3680 (2005). [CrossRef] [PubMed]
  24. A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009). [CrossRef] [PubMed]
  25. J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, ““Optical trapping using ultashort 12.9fs pulses,” Optical Trapping and Optical Micromanipulation V,” Proc. SPIE 7038, 70380Y, 70380Y–11 (2008). [CrossRef]
  26. J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,” Opt. Express 18(7), 7554–7568 (2010). [CrossRef] [PubMed]
  27. L. G. Wang and C. L. Zhao, “Dynamic radiation force of a pulsed gaussian beam acting on rayleigh dielectric sphere,” Opt. Express 15(17), 10615–10621 (2007). [CrossRef] [PubMed]
  28. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991). [CrossRef]
  29. E. J. Hinch, “Application of the Langevin equation to fluid suspensions,” J. Fluid Mech. 72(03), 499–511 (1975). [CrossRef]
  30. K. Berg-Sørensen and H. Flyvbjerg, “The color of thermal noise in classical Brownian motion: a feasibility study of direct experimental observation,” N. J. Phys. 7, 38 (2005). [CrossRef]
  31. B. Lukić, S. Jeney, C. Tischer, A. J. Kulik, L. Forró, and E.-L. Florin, “Direct observation of nondiffusive motion of a Brownian particle,” Phys. Rev. Lett. 95(16), 160601 (2005). [CrossRef] [PubMed]
  32. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd English Edition, Revised, Translated from the Russian by J. B. Sykes and W. H. Reid, (Elsevier, 2009), pp. 281.
  33. H. Li, Y. Zhang, J. Li, and L. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett. 36(11), 1996–1998 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited