OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

The effect of immersion oil in optical tweezers

Ali Mahmoudi and S. Nader S. Reihani  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14794-14800 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1657 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optimized optical tweezers are of great importance for biological micromanipulation. In this paper, we present a detailed electromagnetic-based calculation of the spatial intensity distribution for a laser beam focused through a high numerical aperture objective when there are several discontinuities in the optical pathway of the system. For a common case of 3 interfaces we have shown that 0.01 increase in the refractive index of the immersion medium would shift the optimal trapping depth by 3–4μm (0.2–0.6μm) for aqueous (air) medium. For the first time, We have shown that the alteration of the refractive index of the immersion medium can be also used in aerosol trapping provided that larger increase in the refractive index is considered.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(220.1000) Optical design and fabrication : Aberration compensation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: April 4, 2011
Revised Manuscript: May 15, 2011
Manuscript Accepted: May 15, 2011
Published: July 18, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Ali Mahmoudi and S. Nader S. Reihani, "The effect of immersion oil in optical tweezers," Opt. Express 19, 14794-14800 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  2. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003). [CrossRef] [PubMed]
  3. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989). [CrossRef] [PubMed]
  4. T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007). [CrossRef] [PubMed]
  5. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). [CrossRef] [PubMed]
  6. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419 (2004). [CrossRef]
  7. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008). [CrossRef] [PubMed]
  8. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31, 2429–2431(2006). [CrossRef] [PubMed]
  9. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007). [CrossRef] [PubMed]
  10. P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998). [CrossRef]
  11. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204–211 (2006). [CrossRef]
  12. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004). [CrossRef]
  13. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010). [CrossRef]
  14. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  15. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A , 12, 325–332 (1995). [CrossRef]
  16. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]
  17. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002). [CrossRef] [PubMed]
  18. V. Wong and M. A. Ratner, “Size dependence of gradient and nongradient optical forces in silver nanoparticles,” J. Opt. Soc. Am. B 24, 106–112 (2007). [CrossRef]
  19. A. Samadi and N. S. Reihani, “Optimal beam diameter for optical tweezers,” Opt. Lett. 35, 1494–1496 (2010). [CrossRef] [PubMed]
  20. A. Mahmoudi and S. N. S. Reihani, “Phase contrast optical tweezers,” Opt. Express 18, 17983–17996 (2010). [CrossRef] [PubMed]
  21. M. Guillon, K. Dholakia, and D. McGloin, “Optical trapping and spectral analysis of aerosols with a supercontiuum laser source,” Opt. Express 16, 7655–7664 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited