OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Maximizing fluorescence collection efficiency in multiphoton microscopy

Joseph P. Zinter and Michael J. Levene  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15348-15362 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1961 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm.

© 2011 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4830) Optical design and fabrication : Systems design
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: June 10, 2011
Revised Manuscript: July 11, 2011
Manuscript Accepted: July 11, 2011
Published: July 26, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Joseph P. Zinter and Michael J. Levene, "Maximizing fluorescence collection efficiency in multiphoton microscopy," Opt. Express 19, 15348-15362 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  3. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996). [CrossRef]
  4. E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188(1–4), 25–29 (2001). [CrossRef]
  5. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  6. A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007). [CrossRef]
  7. A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008). [CrossRef]
  8. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006). [CrossRef] [PubMed]
  9. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  10. S. G. Parra, T. H. Chia, J. P. Zinter, and M. J. Levene, “Multiphoton microscopy of cleared mouse organs,” J. Biomed. Opt. 15(3), 036017 (2010). [CrossRef] [PubMed]
  11. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001). [CrossRef] [PubMed]
  12. V. Tuchin, Tissue Optics, 2.ed., (SPIE, Bellingham, Washington, 2000).
  13. E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41(25), 5376–5382 (2002). [CrossRef] [PubMed]
  14. Y. Le Grand, A. Leray, T. Guilbert, and C. Odin, “Non-descanned versus descanned epifluorescence collection in two-photon microscopy: Experiments and Monte Carlo simulations,” Opt. Commun. 281(21), 5480–5486 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited