OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging

Nengyun Feng, Jianjun Qiu, Pengcheng Li, Xiaoli Sun, Cui Yin, Weihua Luo, Shangbin Chen, and Qingming Luo  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15777-15791 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (6001 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Automatic separation of arteries and veins in optical cerebral cortex images is important in clinical practice and preclinical study. In this paper, a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination is presented. This method is based on the relative temporal minimum reflectance analysis of laser speckle images. The validation is demonstrated with both theoretic simulations and experimental results applied to the rat cortex. Moreover, this method can be combined with laser speckle contrast analysis so that the artery-vein separation and blood flow imaging can be simultaneously obtained using the same raw laser speckle images data to enable more accurate analysis of changes of cerebral blood flow within different tissue compartments during functional activation, disease dynamic, and neurosurgery, which may broaden the applications of laser speckle imaging in biology and medicine.

© 2011 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.6150) Imaging systems : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 9, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 26, 2011
Published: August 3, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Nengyun Feng, Jianjun Qiu, Pengcheng Li, Xiaoli Sun, Cui Yin, Weihua Luo, Shangbin Chen, and Qingming Luo, "Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging," Opt. Express 19, 15777-15791 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973). [CrossRef] [PubMed]
  2. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003). [CrossRef] [PubMed]
  3. N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994). [CrossRef] [PubMed]
  4. F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990). [PubMed]
  5. K. Akita and H. Kuga, “A computer method of understanding ocular fundus images,” Pattern Recognit. 15(6), 431–443 (1982). [CrossRef]
  6. J. J. Yu, B. Hung, and H. Sun, “Automatic recognition of retinopathy from retinal images,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Philadelphia, 1990), pp. 171–173.
  7. H. Li, W. Hsu, M. L. Lee, and H. Wang, “A piecewise Gaussian Model for profiling and differentiating retinal vessels,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Barcelona, 2003), pp. 1069–1072.
  8. H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007). [CrossRef] [PubMed]
  9. I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008). [CrossRef] [PubMed]
  10. I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005). [CrossRef] [PubMed]
  11. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009). [CrossRef] [PubMed]
  12. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007). [CrossRef]
  13. D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010). [CrossRef] [PubMed]
  14. L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35(9), 1482–1484 (2010). [CrossRef] [PubMed]
  15. P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010). [CrossRef]
  16. T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001). [CrossRef] [PubMed]
  17. J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002). [CrossRef] [PubMed]
  18. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef] [PubMed]
  19. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005). [CrossRef] [PubMed]
  20. J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006). [CrossRef] [PubMed]
  21. T. P. Obrenovitch, S. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage 45(1), 68–74 (2009). [CrossRef] [PubMed]
  22. E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010). [CrossRef] [PubMed]
  23. Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008). [CrossRef] [PubMed]
  24. Z. Luo, Z. Yuan, M. Tully, Y. Pan, and C. Du, “Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography,” Appl. Opt. 48(10), D247–D255 (2009). [CrossRef] [PubMed]
  25. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004). [CrossRef] [PubMed]
  26. R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006). [CrossRef] [PubMed]
  27. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007). [CrossRef] [PubMed]
  28. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996). [CrossRef]
  29. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003). [CrossRef] [PubMed]
  30. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006). [CrossRef] [PubMed]
  31. K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007). [CrossRef] [PubMed]
  32. A. K. Bui, K. M. Teves, E. Indrawan, W. Jia, and B. Choi, “Longitudinal, multimodal functional imaging of microvascular response to photothermal therapy,” Opt. Lett. 35(19), 3216–3218 (2010). [CrossRef] [PubMed]
  33. V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007). [CrossRef] [PubMed]
  34. W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008). [CrossRef]
  35. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008). [CrossRef] [PubMed]
  36. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17(16), 13904–13917 (2009). [CrossRef] [PubMed]
  37. J. W. Goodman, Statistical Optics (Wiley & Sons, New York, 1985).
  38. J. W. Goodman, Speckle Phenomena in Optical: Theory and Applications (Roberts and Company, Englewood, Colorado, 2007).
  39. D. D. Duncan and S. J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Opt. Express 10(18), 927–941 (2002). [PubMed]
  40. S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. T. Hinds, “Quantitative temporal speckle contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A 24(12), 3728–3734 (2007). [CrossRef] [PubMed]
  41. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008). [CrossRef] [PubMed]
  42. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, New York, 2004).
  43. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A 25(1), 231–237 (2008). [CrossRef] [PubMed]
  44. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010). [CrossRef] [PubMed]
  45. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008). [CrossRef] [PubMed]
  46. R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).
  47. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996). [CrossRef]
  48. S. Prahl, “Optical Absorption of Hemoglobin,” (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  49. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  50. A. Jakobsson and G. E. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31(3), 301–307 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited