OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source

Chi Zhang, Yi Qiu, Rui Zhu, Kenneth K. Y. Wong, and Kevin K. Tsia  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15810-15816 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1147 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temporal stability of the broadband source, such as supercontinuum (SC), is the key enabling factor for realizing high performance ultrafast serial time-encoded amplified microscopy (STEAM). Owing to that the long-pulse SC (picosecond to nanosecond) generation generally results in an ultrabroadband spectrum with significant pulse-to-pulse fluctuation, only the ultrashort-pulse (femtosecond) SC sources, which offer better temporal stability, have been employed in STEAM so far. Here we report a simple approach to achieve active control of picosecond SC stability and to help extend the applicability of SC in STEAM from the femtosecond to the picosecond or even nanosecond regimes. We experimentally demonstrate stable single-shot STEAM imaging at a frame rate of 4.9 MHz using the CW-triggered picosecond SC source. Such CW-stabilized SC can greatly reduce the shot-to-shot fluctuation, and thus improves the STEAM image quality significantly.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(170.0110) Medical optics and biotechnology : Imaging systems
(180.0180) Microscopy : Microscopy
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:

Original Manuscript: April 29, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 27, 2011
Published: August 3, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Chi Zhang, Yi Qiu, Rui Zhu, Kenneth K. Y. Wong, and Kevin K. Tsia, "Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source," Opt. Express 19, 15810-15816 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006). [CrossRef] [PubMed]
  2. J. V. Watson, Introduction to Flow Cytometry (Cambridge University Press, 2004).
  3. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  4. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008). [CrossRef]
  5. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010). [CrossRef] [PubMed]
  6. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011). [CrossRef]
  7. S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Opt. Lett. 36(2), 220–222 (2011). [CrossRef] [PubMed]
  8. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009). [CrossRef] [PubMed]
  9. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  10. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008). [CrossRef] [PubMed]
  11. J. N. Kutz, C. Lyngå, and B. J. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13(11), 3989–3998 (2005). [CrossRef] [PubMed]
  12. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008). [CrossRef] [PubMed]
  13. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010). [CrossRef] [PubMed]
  14. G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009). [CrossRef]
  15. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011). [CrossRef] [PubMed]
  16. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009). [CrossRef]
  17. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  18. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  19. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002). [CrossRef]
  20. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007). [CrossRef] [PubMed]
  21. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited