OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam

Zheng-Jun Li, Zhen-Sen Wu, and Qing-Chao Shang  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16044-16057 (2011)
http://dx.doi.org/10.1364/OE.19.016044


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the theory of electromagnetic scattering of a uniaxial anisotropic sphere, we derive the analytical expressions of the radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam. The beam’s propagation direction is parallel to the primary optical axis of the anisotropic sphere. The effects of the permittivity tensor elements ε t and ε z on the axial radiation forces are numerically analyzed in detail. The two transverse components of radiation forces exerted on a uniaxial anisotropic sphere, which is distinct from that exerted on an isotropic sphere due to the two eigen waves in the uniaxial anisotropic sphere, are numerically studied as well. The characteristics of the axial and transverse radiation forces are discussed for different radii of the sphere, beam waist width, and distances from the sphere center to the beam center of an off-axis Gaussian beam. The theoretical predictions of radiation forces exerted on a uniaxial anisotropic sphere are hoped to provide effective ways to achieve the improvement of optical tweezers as well as the capture, suspension, and high-precision delivery of anisotropic particles.

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.1190) Materials : Anisotropic optical materials
(290.5850) Scattering : Scattering, particles

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: June 21, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 20, 2011
Published: August 8, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Zheng-Jun Li, Zhen-Sen Wu, and Qing-Chao Shang, "Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam," Opt. Express 19, 16044-16057 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-17-16044


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  4. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996). [CrossRef]
  5. T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12(6), 479–485 (1991). [CrossRef] [PubMed]
  6. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of force equations,” J. Opt. Soc. Am. B 12(9), 1680–1687 (1995). [CrossRef]
  7. T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Stuttg.) 102, 181–190 (1996).
  8. S. Nemoto and H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37(27), 6386–6394 (1998). [CrossRef] [PubMed]
  9. G. Gouesbet, B. Maheu, and G. Grehan, “Light Scattering from a sphere arbitrarily located in a Gaussian beam,using a Bromwich formulation,” J. Opt. Soc. Am. A 5(9), 1427–1443 (1988). [CrossRef]
  10. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4954–4962 (1989). [CrossRef]
  11. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994). [CrossRef]
  12. K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996). [CrossRef] [PubMed]
  13. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43(12), 2532–2544 (2004). [CrossRef] [PubMed]
  14. Y. K. Nahmias and D. J. Odde, “Analysis of Radiation Forces in Laser Trapping and Laser-Guided Direct Writing Applications,” IEEE J. Quantum Electron. 38(2), 131–141 (2002). [CrossRef]
  15. G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Grehan, and G. Gouesbet, ““Trapping and levitation of a dielectric sphere with off-centred Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. J. Euro. Opt. Soc. Part A 4(5), 571–585 (1995). [CrossRef]
  16. Y. K. Nahmias, B. Z. Gao, and D. J. Odde, “Dimensionless parameters for the design of optical traps and laser guidance systems,” Appl. Opt. 43(20), 3999–4006 (2004). [CrossRef] [PubMed]
  17. F. L. Mao, Q. R. Xing, K. Wang, L. Y. Lang, L. Chai, and Q. Y. Wang, “Calculation of axial optical forces exerted on medium-sized particles by optical trap,” Opt. Laser Technol. 39(1), 34–39 (2007). [CrossRef]
  18. F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007). [CrossRef] [PubMed]
  19. M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, “Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express 16(13), 9306–9317 (2008). [CrossRef] [PubMed]
  20. Y. L. Geng, X. B. Wu, and L. W. Li, “Mie scattering by a uniaxial anisotropic sphere,” physical review E 70, 056609 (2004). [CrossRef]
  21. B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part I. Homogeneous sphere,” J. Opt. Soc. Am. A 23(5), 1111–1123 (2006). [CrossRef] [PubMed]
  22. C. W. Qiu, S. Zouhdi, and A. Razek, “Modified Spherical Wave Functions With Anisotropy Ratio: Application to the Analysis of Scattering by Multilayered Anisotropic Shells,” IEEE Trans. Antenn. Propag. 55(12), 3515–3523 (2007). [CrossRef]
  23. M. Sluijter, D. K. de Boer, and J. J. M. Braat, “General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media,” J. Opt. Soc. Am. A 25(6), 1260–1273 (2008). [CrossRef] [PubMed]
  24. Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26(8), 1778–1788 (2009). [CrossRef]
  25. Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27(6), 1457–1465 (2010). [CrossRef] [PubMed]
  26. Z. J. Li, Z. S. Wu, and H. Y. Li, “Analysis of electromagnetic scattering by uniaxial anisotropic bispheres,” J. Opt. Soc. Am. A 28(2), 118–125 (2011). [CrossRef] [PubMed]
  27. G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the geneeralized Lorenz-Mie theory using three different methods,” Appl. Opt. 27(23), 4874–4883 (1988). [CrossRef] [PubMed]
  28. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36(21), 5188–5198 (1997). [CrossRef] [PubMed]
  29. G. Gousbet, “Localized interpretation to compute all the coefficients gmn in the generalized Lorentz-Mie theory,” J. Opt. Soc. Am. A 7(6), 998–1007 (1990). [CrossRef]
  30. J. A. Lock and G. Gouesbet, “Rigorous justification fo the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory.I. On-axis beams,” J. Opt. Soc. Am. A 11(9), 2503–2515 (1994). [CrossRef]
  31. A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36(13), 2971–2978 (1997). [CrossRef] [PubMed]
  32. H. Polaert, G. Gréhan, and G. Gouesbet, “Improved standard beams with application to reverse radiation pressure,” Appl. Opt. 37(12), 2435–2440 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited