OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Enhancement of three-dimensional perception of numerical hologram reconstructions of real-world objects by motion and stereo

Risto Näsänen, Tristan Colomb, Yves Emery, and Thomas J. Naughton  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16075-16086 (2011)
http://dx.doi.org/10.1364/OE.19.016075


View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the question of how the perception of three-dimensional information reconstructed numerically from digital holograms of real-world objects, and presented on conventional displays, depends on motion and stereoscopic presentation. Perceived depth in an adjustable random pattern stereogram was matched to the depth in hologram reconstructions. The objects in holograms were a microscopic biological cell and a macroscopic metal coil. For control, we used real physical objects in additional to hologram reconstructions of real objects. Stereoscopic presentation increased perceived depth substantially in comparison to non-stereoscopic presentation. When stereoscopic cues were weak or absent e.g. because of blur, motion increased perceived depth considerably. However, when stereoscopic cues were strong, the effect of motion was small. In conclusion, for the maximization of perceived three-dimensional information of holograms on conventional displays, it seems highly beneficial to use the combination of motion and stereoscopic presentation.

© 2011 OSA

OCIS Codes
(090.2870) Holography : Holographic display
(120.2040) Instrumentation, measurement, and metrology : Displays
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: October 25, 2010
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 15, 2011
Published: August 8, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Risto Näsänen, Tristan Colomb, Yves Emery, and Thomas J. Naughton, "Enhancement of three-dimensional perception of numerical hologram reconstructions of real-world objects by motion and stereo," Opt. Express 19, 16075-16086 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-17-16075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006). [CrossRef]
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  3. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006). [CrossRef] [PubMed]
  4. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  5. I. J. Cox and C. J. R. Sheppard, “Digital image processing of confocal images,” Image Vis. Comput. 1(1), 52–56 (1983). [CrossRef]
  6. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005). [CrossRef] [PubMed]
  7. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008). [CrossRef] [PubMed]
  8. T. Lehtimäki and T.J. Naughton, “Stereoscopic viewing of digital holograms of real-world objects,” presented at Capture, Transmission and Display of 3D Video, article no. 39, Kos, Greece, 7–9 May 2007.
  9. I. P. Howard and B. J. Rogers, Seeing in Depth, vol. 2 (I Porteous, 2002).
  10. H. H. Bülthoff and H. A. Mallot, “Integration of depth modules: stereo and shading,” J. Opt. Soc. Am. A 5(10), 1749–1758 (1988). [CrossRef] [PubMed]
  11. M. Nawrot and R. Blake, “Neural integration of information specifying structure from stereopsis and motion,” Science 244(4905), 716–718 (1989). [CrossRef] [PubMed]
  12. J. S. Tittle and M. L. Braunstein, “Recovery of 3-D shape from binocular disparity and structure from motion,” Percept. Psychophys. 54(2), 157–169 (1993). [CrossRef] [PubMed]
  13. M. F. Bradshaw and B. J. Rogers, “The interaction of binocular disparity and motion parallax in the computation of depth,” Vision Res. 36(21), 3457–3468 (1996). [CrossRef] [PubMed]
  14. B. Julesz, “Binocular depth perception of computer generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).
  15. C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999). [CrossRef]
  16. H. Wallach and D. N. O’Connell, “The kinetic depth effect,” J. Exp. Psychol. 45(4), 205–217 (1953). [CrossRef] [PubMed]
  17. P. B. Iyer and A. W. Freeman, “Opponent motion interactions in the perception of structure from motion,” J. Vis. 9(2), 2, 1–11 (2009). [CrossRef] [PubMed]
  18. E. B. Johnston, “Systematic distortions of shape from stereopsis,” Vision Res. 31(7-8), 1351–1360 (1991). [CrossRef] [PubMed]
  19. R. C. Gonzalez and E. E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Inc., 2002).
  20. S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998). [CrossRef] [PubMed]
  21. M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009). [CrossRef] [PubMed]
  22. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011). [CrossRef] [PubMed]
  23. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981). [CrossRef] [PubMed]
  24. J. M. Artigas, A. Felipe, and M. J. Buades, “Contrast sensitivity of the visual system in speckle imagery,” J. Opt. Soc. Am. A 11(9), 2345–2349 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3755 KB)      QuickTime
» Media 2: MOV (1360 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited